BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37180117)

  • 1. Manual cell selection in single cell transcriptomics using scSELpy supports the analysis of immune cell subsets.
    Dedden M; Wiendl M; Müller TM; Neurath MF; Zundler S
    Front Immunol; 2023; 14():1027346. PubMed ID: 37180117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview.
    Slovin S; Carissimo A; Panariello F; Grimaldi A; Bouché V; Gambardella G; Cacchiarelli D
    Methods Mol Biol; 2021; 2284():343-365. PubMed ID: 33835452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How to Get Started with Single Cell RNA Sequencing Data Analysis.
    Balzer MS; Ma Z; Zhou J; Abedini A; Susztak K
    J Am Soc Nephrol; 2021 Jun; 32(6):1279-1292. PubMed ID: 33722930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of Transcriptional Profiling of Immune Cells at the Single-Cell Level.
    Ferguson A; Chen K
    Methods Mol Biol; 2020; 2111():47-57. PubMed ID: 31933197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Analysis of Single-Cell RNA-Seq Data.
    Alessandrì L; Cordero F; Beccuti M; Arigoni M; Calogero RA
    Methods Mol Biol; 2021; 2284():289-301. PubMed ID: 33835449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Valid Post-clustering Differential Analysis for Single-Cell RNA-Seq.
    Zhang JM; Kamath GM; Tse DN
    Cell Syst; 2019 Oct; 9(4):383-392.e6. PubMed ID: 31521605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subsets of mononuclear phagocytes are enriched in the inflamed colons of patients with IBD.
    Liu H; Dasgupta S; Fu Y; Bailey B; Roy C; Lightcap E; Faustin B
    BMC Immunol; 2019 Nov; 20(1):42. PubMed ID: 31718550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IBDsite: a Galaxy-interacting, integrative database for supporting inflammatory bowel disease high throughput data analysis.
    Merelli I; Viti F; Milanesi L
    BMC Bioinformatics; 2012; 13 Suppl 14(Suppl 14):S5. PubMed ID: 23095257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SMaSH: a scalable, general marker gene identification framework for single-cell RNA-sequencing.
    Nelson ME; Riva SG; Cvejic A
    BMC Bioinformatics; 2022 Aug; 23(1):328. PubMed ID: 35941549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate feature selection improves single-cell RNA-seq cell clustering.
    Su K; Yu T; Wu H
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33611426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of automatic cell identification methods for single-cell RNA sequencing data.
    Abdelaal T; Michielsen L; Cats D; Hoogduin D; Mei H; Reinders MJT; Mahfouz A
    Genome Biol; 2019 Sep; 20(1):194. PubMed ID: 31500660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-cell RNA sequencing reveals ex vivo signatures of SARS-CoV-2-reactive T cells through 'reverse phenotyping'.
    Fischer DS; Ansari M; Wagner KI; Jarosch S; Huang Y; Mayr CH; Strunz M; Lang NJ; D'Ippolito E; Hammel M; Mateyka L; Weber S; Wolff LS; Witter K; Fernandez IE; Leuschner G; Milger K; Frankenberger M; Nowak L; Heinig-Menhard K; Koch I; Stoleriu MG; Hilgendorff A; Behr J; Pichlmair A; Schubert B; Theis FJ; Busch DH; Schiller HB; Schober K
    Nat Commun; 2021 Jul; 12(1):4515. PubMed ID: 34312385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. VPAC: Variational projection for accurate clustering of single-cell transcriptomic data.
    Chen S; Hua K; Cui H; Jiang R
    BMC Bioinformatics; 2019 May; 20(Suppl 7):0. PubMed ID: 31074382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic profiling of intestinal T-cell receptor repertoires in inflammatory bowel disease.
    Saravanarajan K; Douglas AR; Ismail MS; Omorogbe J; Semenov S; Muphy G; O'Riordan F; McNamara D; Nakagome S
    Genes Immun; 2020 Feb; 21(2):109-118. PubMed ID: 32029881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polled Digital Cell Sorter (p-DCS): Automatic identification of hematological cell types from single cell RNA-sequencing clusters.
    Domanskyi S; Szedlak A; Hawkins NT; Wang J; Paternostro G; Piermarocchi C
    BMC Bioinformatics; 2019 Jul; 20(1):369. PubMed ID: 31262249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data.
    Sun Z; Wang T; Deng K; Wang XF; Lafyatis R; Ding Y; Hu M; Chen W
    Bioinformatics; 2018 Jan; 34(1):139-146. PubMed ID: 29036318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data Analysis in Single-Cell Transcriptome Sequencing.
    Gao S
    Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical downstream analysis steps for single-cell RNA sequencing data.
    Zhang Z; Cui F; Lin C; Zhao L; Wang C; Zou Q
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Latent cellular analysis robustly reveals subtle diversity in large-scale single-cell RNA-seq data.
    Cheng C; Easton J; Rosencrance C; Li Y; Ju B; Williams J; Mulder HL; Pang Y; Chen W; Chen X
    Nucleic Acids Res; 2019 Dec; 47(22):e143. PubMed ID: 31566233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.