BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 37180119)

  • 1. Delivering co-stimulatory tumor necrosis factor receptor agonism for cancer immunotherapy: past, current and future perspectives.
    Dadas O; Ertay A; Cragg MS
    Front Immunol; 2023; 14():1147467. PubMed ID: 37180119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A co-evolution perspective of the TNFSF and TNFRSF families in the immune system.
    Collette Y; Gilles A; Pontarotti P; Olive D
    Trends Immunol; 2003 Jul; 24(7):387-94. PubMed ID: 12860530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Harnessing co-stimulatory TNF receptors for cancer immunotherapy: Current approaches and future opportunities.
    Waight JD; Gombos RB; Wilson NS
    Hum Antibodies; 2017; 25(3-4):87-109. PubMed ID: 28085016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The TNF Family of Ligands and Receptors: Communication Modules in the Immune System and Beyond.
    Dostert C; Grusdat M; Letellier E; Brenner D
    Physiol Rev; 2019 Jan; 99(1):115-160. PubMed ID: 30354964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The TNF-TNFR Family of Co-signal Molecules.
    So T; Ishii N
    Adv Exp Med Biol; 2019; 1189():53-84. PubMed ID: 31758531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting Co-Stimulatory Receptors of the TNF Superfamily for Cancer Immunotherapy.
    Müller D
    BioDrugs; 2023 Jan; 37(1):21-33. PubMed ID: 36571696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding Studies of TNF Receptor Superfamily (TNFRSF) Receptors on Intact Cells.
    Lang I; Füllsack S; Wyzgol A; Fick A; Trebing J; Arana JA; Schäfer V; Weisenberger D; Wajant H
    J Biol Chem; 2016 Mar; 291(10):5022-37. PubMed ID: 26721880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Second- and third-generation drugs for immuno-oncology treatment-The more the better?
    Dempke WCM; Fenchel K; Uciechowski P; Dale SP
    Eur J Cancer; 2017 Mar; 74():55-72. PubMed ID: 28335888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Basic characterization of antibodies targeting receptors of the tumor necrosis factor receptor superfamily.
    Zaitseva O; Anany M; Wajant H; Lang I
    Front Immunol; 2023; 14():1115667. PubMed ID: 37051245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Implementation of TNFRSF Co-Stimulatory Domains in CAR-T Cells for Optimal Functional Activity.
    He Y; Vlaming M; van Meerten T; Bremer E
    Cancers (Basel); 2022 Jan; 14(2):. PubMed ID: 35053463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cancer immunotherapy: co-stimulatory agonists and co-inhibitory antagonists.
    Peggs KS; Quezada SA; Allison JP
    Clin Exp Immunol; 2009 Jul; 157(1):9-19. PubMed ID: 19659765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational analyses of the interactome between TNF and TNFR superfamilies.
    Dhusia K; Su Z; Wu Y
    Comput Biol Chem; 2023 Apr; 103():107823. PubMed ID: 36682326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fc-based Duokines: dual-acting costimulatory molecules comprising TNFSF ligands in the single-chain format fused to a heterodimerizing Fc (scDk-Fc).
    Aschmoneit N; Kocher K; Siegemund M; Lutz MS; Kühl L; Seifert O; Kontermann RE
    Oncoimmunology; 2022; 11(1):2028961. PubMed ID: 35083097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting the T-cell co-stimulatory CD27/CD70 pathway in cancer immunotherapy: rationale and potential.
    van de Ven K; Borst J
    Immunotherapy; 2015; 7(6):655-67. PubMed ID: 26098609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting tumor-necrosis factor receptor pathways for tumor immunotherapy.
    Schaer DA; Hirschhorn-Cymerman D; Wolchok JD
    J Immunother Cancer; 2014; 2():7. PubMed ID: 24855562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of FcγR-Dependent Agonism of Antibodies Specific for Receptors of the Tumor Necrosis Factor (TNF) Receptor Superfamily (TNFRSF).
    Medler J; Wajant H
    Methods Mol Biol; 2021; 2248():81-90. PubMed ID: 33185869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rationale for anti-OX40 cancer immunotherapy.
    Aspeslagh S; Postel-Vinay S; Rusakiewicz S; Soria JC; Zitvogel L; Marabelle A
    Eur J Cancer; 2016 Jan; 52():50-66. PubMed ID: 26645943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytokine, chemokine, and co-stimulatory fusion proteins for the immunotherapy of solid tumors.
    Khawli LA; Hu P; Epstein AL
    Handb Exp Pharmacol; 2008; (181):291-328. PubMed ID: 18071951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies.
    Chester C; Sanmamed MF; Wang J; Melero I
    Blood; 2018 Jan; 131(1):49-57. PubMed ID: 29118009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HERA-GITRL activates T cells and promotes anti-tumor efficacy independent of FcγR-binding functionality.
    Richards DM; Marschall V; Billian-Frey K; Heinonen K; Merz C; Redondo Müller M; Sefrin JP; Schröder M; Sykora J; Fricke H; Hill O; Gieffers C; Thiemann M
    J Immunother Cancer; 2019 Jul; 7(1):191. PubMed ID: 31324216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.