These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 3718039)

  • 1. The electrophysiological effects of calcium channel blockade during standard hyperkalemic hypothermic cardioplegic arrest.
    Ferguson TB; Damiano RJ; Smith PK; Buhrman WC; Cox JL
    Ann Thorac Surg; 1986 Jun; 41(6):622-9. PubMed ID: 3718039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical activity in the heart during hyperkalemic hypothermic cardioplegic arrest: site of origin and relationship to specialized conduction tissue.
    Ferguson TB; Smith LS; Smith PK; Damiano RJ; Cox JL
    Ann Thorac Surg; 1987 Apr; 43(4):373-9. PubMed ID: 3566383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium entry blockers and cardioplegia: interaction between nifedipine, potassium, and hypothermia.
    Chiavarelli M; Chiavarelli R; Macchiarelli A; Carpi A; Marino B
    Ann Thorac Surg; 1986 May; 41(5):535-41. PubMed ID: 3707247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preservation of myocyte contractile function after hypothermic, hyperkalemic cardioplegic arrest with 2, 3-butanedione monoxime.
    Dorman BH; Cavallo MJ; Hinton RB; Roy RC; Spinale FG
    J Thorac Cardiovasc Surg; 1996 Mar; 111(3):621-9. PubMed ID: 8601977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium-channel blockade as an adjunct to heterogeneous delivery of cardioplegia.
    Guyton RA; Dorsey LM; Colgan TK; Hatcher CR
    Ann Thorac Surg; 1983 Jun; 35(6):626-32. PubMed ID: 6860005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of cardioplegic potassium concentration and myocardial temperature on electrical activity in the heart during elective cardioplegic arrest.
    Ferguson TB; Smith PK; Lofland GK; Holman WL; Helms MA; Cox JL
    J Thorac Cardiovasc Surg; 1986 Oct; 92(4):755-65. PubMed ID: 3762205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catabolism of high energy phosphates during long-term cold storage of donor hearts: effects of extra- and intracellular fluid-type cardioplegic solutions and calcium channel blockers.
    Sukehiro S; Dyszkiewics W; Minten J; Wynants J; Van Belle H; Flameng W
    J Heart Lung Transplant; 1991; 10(3):387-93. PubMed ID: 1854766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nifedipine and cardioplegia: rat heart studies with the St Thomas' cardioplegic solution.
    Yamamoto F; Manning AS; Braimbridge MV; Hearse DJ
    Cardiovasc Res; 1983 Dec; 17(12):719-27. PubMed ID: 6661743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myocardial protection in the acutely injured heart: hyperpolarizing versus depolarizing hypothermic cardioplegia.
    Lawton JS; Hsia PW; Allen CT; Damiano RJ
    J Thorac Cardiovasc Surg; 1997 Mar; 113(3):567-75. PubMed ID: 9081104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of myocardial protection with nifedipine and potassium.
    Magee PG; Flaherty JT; Bixler TJ; Glower D; Gardner TJ; Bukley BH; Gott VL
    Circulation; 1979 Aug; 60(2 Pt 2):151-7. PubMed ID: 445771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium antagonists and myocardial protection during cardioplegic arrest.
    Yamamoto F; Manning AS; Braimbridge MV; Hearse DJ
    Adv Myocardiol; 1985; 6():545-62. PubMed ID: 3992050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preservation of myocyte contractile function after hyperthermic cardioplegic arrest by activation of ATP-sensitive potassium channels.
    Dorman BH; Hebbar L; Hinton RB; Roy RC; Spinale FG
    Circulation; 1997 Oct; 96(7):2376-84. PubMed ID: 9337214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conduction block after cardioplegic arrest: prevention by augmented atrial hypothermia.
    Smith PK; Buhrman WC; Ferguson TB; Levett JM; Cox JL
    Circulation; 1983 Sep; 68(3 Pt 2):II41-8. PubMed ID: 6872194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myocyte contractile responsiveness after hypothermic, hyperkalemic cardioplegic arrest. Disparity between exogenous calcium and beta-adrenergic stimulation.
    Cavallo MJ; Dorman BH; Spinale FG; Roy RC
    Anesthesiology; 1995 Apr; 82(4):926-39. PubMed ID: 7717565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The control of myocardial Ca++ sequestration with nifedipine cardioplegia.
    Boe SL; Dixon CM; Sakert TA; Magovern GJ
    J Thorac Cardiovasc Surg; 1982 Nov; 84(5):678-84. PubMed ID: 7132407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in electrical and mechanical recovery from ischemic heart arrest and cardioplegia.
    Juggi JS; Braveny P; Telahoun G; Shuhaiber HJ; Yousof AM
    Adv Myocardiol; 1985; 6():491-502. PubMed ID: 3992047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Persistent atrial activity during cardioplegic arrest: suppression by verapamil.
    Cherry DA; Yvorchuk WA; Malcolm ID
    Can J Cardiol; 1986; 2(5):282-4. PubMed ID: 3768789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Normothermic versus hypothermic hyperkalemic cardioplegia: effects on myocyte contractility.
    Houck WV; Kribbs SB; Zellner JL; Doscher MA; Joshi JD; Crawford FA; Spinale FG
    Ann Thorac Surg; 1998 May; 65(5):1279-83. PubMed ID: 9594851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Duration of asystolic reperfusion and reperfusate electrolyte composition influence postcardioplegia ventricular fibrillation.
    Holman WL; Spruell RD; Pacifico AD
    J Thorac Cardiovasc Surg; 1993 Sep; 106(3):511-9. PubMed ID: 8361195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aprikalim reduces the Na+-Ca2+ exchange outward current enhanced by hyperkalemia in rat ventricular myocytes.
    Li HY; Wu S; He GW; Wong TM
    Ann Thorac Surg; 2002 Apr; 73(4):1253-9; discussion 1259-60. PubMed ID: 11996269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.