These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 37181230)
21. A meta-analysis of the greenhouse gas abatement of bioenergy factoring in land use changes. El Akkari M; Réchauchère O; Bispo A; Gabrielle B; Makowski D Sci Rep; 2018 Jun; 8(1):8563. PubMed ID: 29867194 [TBL] [Abstract][Full Text] [Related]
22. Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production. de Jong S; Antonissen K; Hoefnagels R; Lonza L; Wang M; Faaij A; Junginger M Biotechnol Biofuels; 2017; 10():64. PubMed ID: 28293294 [TBL] [Abstract][Full Text] [Related]
23. Integrated biochar solutions can achieve carbon-neutral staple crop production. Xia L; Cao L; Yang Y; Ti C; Liu Y; Smith P; van Groenigen KJ; Lehmann J; Lal R; Butterbach-Bahl K; Kiese R; Zhuang M; Lu X; Yan X Nat Food; 2023 Mar; 4(3):236-246. PubMed ID: 37118263 [TBL] [Abstract][Full Text] [Related]
24. Sustainable bioenergy production from marginal lands in the US Midwest. Gelfand I; Sahajpal R; Zhang X; Izaurralde RC; Gross KL; Robertson GP Nature; 2013 Jan; 493(7433):514-7. PubMed ID: 23334409 [TBL] [Abstract][Full Text] [Related]
25. Life-cycle energy use and greenhouse gas emissions of production of bioethanol from sorghum in the United States. Cai H; Dunn JB; Wang Z; Han J; Wang MQ Biotechnol Biofuels; 2013 Oct; 6(1):141. PubMed ID: 24088388 [TBL] [Abstract][Full Text] [Related]
26. Biochemical production of bioenergy from agricultural crops and residue in Iran. Karimi Alavijeh M; Yaghmaei S Waste Manag; 2016 Jun; 52():375-94. PubMed ID: 27012716 [TBL] [Abstract][Full Text] [Related]
27. Assessment of greenhouse gases emissions and intensity from Chinese marine aquaculture in the past three decades. Xu C; Su G; Zhao K; Wang H; Xu X; Li Z; Hu Q; Xu J J Environ Manage; 2023 Mar; 329():117025. PubMed ID: 36563445 [TBL] [Abstract][Full Text] [Related]
28. Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Gaunt JL; Lehmann J Environ Sci Technol; 2008 Jun; 42(11):4152-8. PubMed ID: 18589980 [TBL] [Abstract][Full Text] [Related]
29. Renewable carbon feedstock for polymers: environmental benefits from synergistic use of biomass and CO Bachmann M; Kätelhön A; Winter B; Meys R; Müller LJ; Bardow A Faraday Discuss; 2021 Jul; 230():227-246. PubMed ID: 33889872 [TBL] [Abstract][Full Text] [Related]
30. Interactions among bioenergy feedstock choices, landscape dynamics, and land use. Dale VH; Kline KL; Wright LL; Perlack RD; Downing M; Graham RL Ecol Appl; 2011 Jun; 21(4):1039-54. PubMed ID: 21774412 [TBL] [Abstract][Full Text] [Related]
31. Waste wood as bioenergy feedstock. Climate change impacts and related emission uncertainties from waste wood based energy systems in the UK. Röder M; Thornley P Waste Manag; 2018 Apr; 74():241-252. PubMed ID: 29203077 [TBL] [Abstract][Full Text] [Related]
32. Assessment of the emissions and air quality impacts of biomass and biogas use in California. Carreras-Sospedra M; Williams R; Dabdub D J Air Waste Manag Assoc; 2016 Feb; 66(2):134-50. PubMed ID: 26378722 [TBL] [Abstract][Full Text] [Related]
33. Spatial and life cycle assessment of bioenergy-driven land-use changes in Ireland. Clarke R; Sosa A; Murphy F Sci Total Environ; 2019 May; 664():262-275. PubMed ID: 30743120 [TBL] [Abstract][Full Text] [Related]
34. Environmental and economic evaluation of bioenergy in Ontario, Canada. Zhang Y; Habibi S; MacLean HL J Air Waste Manag Assoc; 2007 Aug; 57(8):919-33. PubMed ID: 17824282 [TBL] [Abstract][Full Text] [Related]
35. Land-use and alternative bioenergy pathways for waste biomass. Campbell JE; Block E Environ Sci Technol; 2010 Nov; 44(22):8665-9. PubMed ID: 20883033 [TBL] [Abstract][Full Text] [Related]
36. Incorporating health co-benefits into technology pathways to achieve China's 2060 carbon neutrality goal: a modelling study. Zhang S; An K; Li J; Weng Y; Zhang S; Wang S; Cai W; Wang C; Gong P Lancet Planet Health; 2021 Nov; 5(11):e808-e817. PubMed ID: 34758346 [TBL] [Abstract][Full Text] [Related]
37. Utilization of agricultural waste biomass and recycling toward circular bioeconomy. Kumar Sarangi P; Subudhi S; Bhatia L; Saha K; Mudgil D; Prasad Shadangi K; Srivastava RK; Pattnaik B; Arya RK Environ Sci Pollut Res Int; 2023 Jan; 30(4):8526-8539. PubMed ID: 35554831 [TBL] [Abstract][Full Text] [Related]
38. Climate change impacts of bioenergy technologies: A comparative consequential LCA of sustainable fuels production with CCUS. Krogh A; Junginger M; Shen L; Grue J; Pedersen TH Sci Total Environ; 2024 Aug; 940():173660. PubMed ID: 38834100 [TBL] [Abstract][Full Text] [Related]
39. Trends in renewable energy production employing biomass-based biochar. Kant Bhatia S; Palai AK; Kumar A; Kant Bhatia R; Kumar Patel A; Kumar Thakur V; Yang YH Bioresour Technol; 2021 Nov; 340():125644. PubMed ID: 34332449 [TBL] [Abstract][Full Text] [Related]
40. Net mitigation potential of straw return to Chinese cropland: estimation with a full greenhouse gas budget model. Lu F; Wang X; Han B; Ouyang Z; Duan X; Zheng H Ecol Appl; 2010 Apr; 20(3):634-47. PubMed ID: 20437953 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]