These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 37181230)
41. Implications of wheat straw logistic systems for bioenergy sustainable development in China: Costs, energy consumption, and GHG emissions. Fang YR; Shi W; Xie GH Sci Total Environ; 2022 Sep; 837():155633. PubMed ID: 35550895 [TBL] [Abstract][Full Text] [Related]
42. Empirical Evidence for the Potential Climate Benefits of Decarbonizing Light Vehicle Transport in the U.S. with Bioenergy from Purpose-Grown Biomass with and without BECCS. Gelfand I; Hamilton SK; Kravchenko AN; Jackson RD; Thelen KD; Robertson GP Environ Sci Technol; 2020 Mar; 54(5):2961-2974. PubMed ID: 32052964 [TBL] [Abstract][Full Text] [Related]
43. Reduction of CO Amin NAS; Talebian-Kiakalaieh A Waste Manag; 2018 Mar; 73():256-264. PubMed ID: 29150259 [TBL] [Abstract][Full Text] [Related]
44. Impact of Biogenic Carbon Neutrality Assumption for Achieving a Net-Zero Emission Target: Insights from a Techno-Economic Analysis. Kouchaki-Penchah H; Bahn O; Vaillancourt K; Moreau L; Thiffault E; Levasseur A Environ Sci Technol; 2023 Jul; 57(29):10615-10628. PubMed ID: 37432042 [TBL] [Abstract][Full Text] [Related]
45. China's energy-water-land system co-evolution under carbon neutrality goal and climate impacts. Wang J; Duan Y; Jiang H; Wang C J Environ Manage; 2024 Feb; 352():120036. PubMed ID: 38224640 [TBL] [Abstract][Full Text] [Related]
46. Climate change mitigation in Canada's forest sector: a spatially explicit case study for two regions. Smyth CE; Smiley BP; Magnan M; Birdsey R; Dugan AJ; Olguin M; Mascorro VS; Kurz WA Carbon Balance Manag; 2018 Sep; 13(1):11. PubMed ID: 30187146 [TBL] [Abstract][Full Text] [Related]
47. Green cheese: partial life cycle assessment of greenhouse gas emissions and energy intensity of integrated dairy production and bioenergy systems. Aguirre-Villegas HA; Passos-Fonseca TH; Reinemann DJ; Armentano LE; Wattiaux MA; Cabrera VE; Norman JM; Larson R J Dairy Sci; 2015 Mar; 98(3):1571-92. PubMed ID: 25597974 [TBL] [Abstract][Full Text] [Related]
48. Expanding carbon neutrality strategies: Incorporating out-of-boundary emissions in city-level frameworks. Zhang Z; Li M; Zhang L; Zhou Y; Zhu S; Lv C; Zheng Y; Cai B; Wang J Environ Sci Ecotechnol; 2024 Jul; 20():100354. PubMed ID: 38204761 [TBL] [Abstract][Full Text] [Related]
49. The Role of Industrial Parks in Mitigating Greenhouse Gas Emissions from China. Guo Y; Tian J; Zang N; Gao Y; Chen L Environ Sci Technol; 2018 Jul; 52(14):7754-7762. PubMed ID: 29902379 [TBL] [Abstract][Full Text] [Related]
50. Cumulative global forest carbon implications of regional bioenergy expansion policies. Kim SJ; Baker JS; Sohngen BL; Shell M Resour Energy Econ; 2018 Aug; 53():198-219. PubMed ID: 30245551 [TBL] [Abstract][Full Text] [Related]
51. Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Roberts KG; Gloy BA; Joseph S; Scott NR; Lehmann J Environ Sci Technol; 2010 Jan; 44(2):827-33. PubMed ID: 20030368 [TBL] [Abstract][Full Text] [Related]
52. Reduced rural residential emissions in the Northern China Plain from 2015 to 2021. Liu J; Peng L; Yu L; Liu X; Yao Z; Zhang Q Sci Total Environ; 2023 Mar; 865():161236. PubMed ID: 36592920 [TBL] [Abstract][Full Text] [Related]
53. Towards the carbon neutrality of sludge treatment and disposal in China: A nationwide analysis based on life cycle assessment and scenario discovery. Zhou X; Yang J; Zhao X; Dong Q; Wang X; Wei L; Yang SS; Sun H; Ren NQ; Bai S Environ Int; 2023 Apr; 174():107927. PubMed ID: 37080039 [TBL] [Abstract][Full Text] [Related]
54. Mitigating life cycle GHG emissions of roads to be built through 2030: Case study of a Chinese province. Huang Y; Wolfram P; Miller R; Azarijafari H; Guo F; An K; Li J; Hertwich E; Gregory J; Wang C J Environ Manage; 2022 Oct; 319():115512. PubMed ID: 35803068 [TBL] [Abstract][Full Text] [Related]
55. Carbon savings from sugarcane straw-derived bioenergy: Insights from a life cycle perspective including soil carbon changes. Bordonal RO; Tenelli S; da Silva Oliveira DM; Chagas MF; Cherubin MR; Weiler DA; Campbell E; Gonzaga LC; Barbosa LC; Cerri CEP; Carvalho JLN Sci Total Environ; 2024 Oct; 947():174670. PubMed ID: 39002600 [TBL] [Abstract][Full Text] [Related]
56. The climate impacts of bioenergy systems depend on market and regulatory policy contexts. Lemoine DM; Plevin RJ; Cohn AS; Jones AD; Brandt AR; Vergara SE; Kammen DM Environ Sci Technol; 2010 Oct; 44(19):7347-50. PubMed ID: 20873876 [TBL] [Abstract][Full Text] [Related]
58. Assessment of bioenergy plant locations using a GIS-MCDA approach based on spatio-temporal stability maps of agricultural and livestock byproducts: A case study. Shi Z; Marinello F; Ai P; Pezzuolo A Sci Total Environ; 2024 Oct; 947():174665. PubMed ID: 38992388 [TBL] [Abstract][Full Text] [Related]
59. Assessing greenhouse gas emissions from the printing and dyeing wastewater treatment and reuse system: Potential pathways towards carbon neutrality. Mao J; Chen H; Xu X; Zhu L Sci Total Environ; 2024 Jun; 927():172301. PubMed ID: 38599411 [TBL] [Abstract][Full Text] [Related]
60. GHG emission factors for bioelectricity, biomethane, and bioethanol quantified for 24 biomass substrates with consequential life-cycle assessment. Tonini D; Hamelin L; Alvarado-Morales M; Astrup TF Bioresour Technol; 2016 May; 208():123-133. PubMed ID: 26938807 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]