BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37181246)

  • 1. Determination of End-Group Functionality of Propylene Oxide-Based Polyether Polyols Recovered from Polyurethane Foams by Chemical Recycling.
    Zdovc B; Grdadolnik M; Pahovnik D; Žagar E
    Macromolecules; 2023 May; 56(9):3374-3382. PubMed ID: 37181246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insight into Chemical Recycling of Flexible Polyurethane Foams by Acidolysis.
    Grdadolnik M; Drinčić A; Oreški A; Onder OC; Utroša P; Pahovnik D; Žagar E
    ACS Sustain Chem Eng; 2022 Jan; 10(3):1323-1332. PubMed ID: 35096493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of Rigid Polyurethane Foams Incorporating Polyols from Chemical Recycling of Post-Industrial Waste Polyurethane Foams.
    Amundarain I; Miguel-Fernández R; Asueta A; García-Fernández S; Arnaiz S
    Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery of Green Polyols from Rigid Polyurethane Waste by Catalytic Depolymerization.
    Miguel-Fernández R; Amundarain I; Asueta A; García-Fernández S; Arnaiz S; Miazza NL; Montón E; Rodríguez-García B; Bianca-Benchea E
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical Recycling of Flexible Polyurethane Foams by Aminolysis to Recover High-Quality Polyols.
    Grdadolnik M; Zdovc B; Drinčić A; Onder OC; Utroša P; Ramos SG; Ramos ED; Pahovnik D; Žagar E
    ACS Sustain Chem Eng; 2023 Jul; 11(29):10864-10873. PubMed ID: 37502771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulose-Based Polyurethane Foams of Low Flammability.
    Szpiłyk M; Lubczak R; Lubczak J
    Polymers (Basel); 2024 May; 16(10):. PubMed ID: 38794632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of calibration curves for accurate estimation of molecular weight averages and distributions of polyether polyols by conventional size exclusion chromatography.
    Xu X; Yang X; Martin SJ; Mes E; Chen J; Meunier DM
    J Chromatogr A; 2018 Aug; 1563():28-36. PubMed ID: 29907409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of amine and polyol functionality in extracts of polyurethane wound management dressings using MALDI-MS.
    Ostah N; Lawson G; Zafar S; Harrington G; Hicks J
    Analyst; 2000 Jan; 125(1):111-4. PubMed ID: 10885068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Life Cycle Assessment of Polyurethane Foams from Polyols Obtained through Chemical Recycling.
    Marson A; Masiero M; Modesti M; Scipioni A; Manzardo A
    ACS Omega; 2021 Jan; 6(2):1718-1724. PubMed ID: 33490830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyurethane foams from vegetable oil-based polyols: a review.
    Kaikade DS; Sabnis AS
    Polym Bull (Berl); 2023; 80(3):2239-2261. PubMed ID: 35310173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of New Eco-Polyols Based on PLA Waste on the Basic Properties of Rigid Polyurethane and Polyurethane/Polyisocyanurate Foams.
    Borowicz M; Isbrandt M; Paciorek-Sadowska J
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructure characterization and mechanistic insight into polyether polyols and their associated polyurethanes.
    Gies AP; Hercules DM; Raghuraman A; Kosanovich AJ; Baker MA; Mukhopadhyay S; Kobylianskii I; Paradkar M
    Mass Spectrom Rev; 2023 Aug; ():. PubMed ID: 37533397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible Polyurethane Foams from Epoxidized Vegetable Oils and a Bio-Based Diisocyanate.
    Cifarelli A; Boggioni L; Vignali A; Tritto I; Bertini F; Losio S
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33670627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemically Functionalized Cellulose Nanocrystals as Reactive Filler in Bio-Based Polyurethane Foams.
    Coccia F; Gryshchuk L; Moimare P; Bossa FL; Santillo C; Barak-Kulbak E; Verdolotti L; Boggioni L; Lama GC
    Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rigid Polyurethane Foams with Various Isocyanate Indices Based on Polyols from Rapeseed Oil and Waste PET.
    Ivdre A; Abolins A; Sevastyanova I; Kirpluks M; Cabulis U; Merijs-Meri R
    Polymers (Basel); 2020 Mar; 12(4):. PubMed ID: 32224860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyols and Polyurethane Foams Based on Water-Soluble Chitosan.
    Strzałka AM; Lubczak J
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on Green Degradation Process of Polyurethane Foam Based on Integral Utilization and Performance of Recycled Polyurethane Oil-Absorbing Foam.
    Peng S; Gong D; Zhou Y; Zhang C; Li Y; Zhang C; Sheng Y
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bio-Polyurethane Foams Modified with a Mixture of Bio-Polyols of Different Chemical Structures.
    Prociak A; Kurańska M; Uram K; Wójtowicz M
    Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recycling of Flexible Polyurethane Foam by Split-Phase Alcoholysis: Identification of Additives and Alcoholyzing Agents to Reach Higher Efficiencies.
    Vanbergen T; Verlent I; De Geeter J; Haelterman B; Claes L; De Vos D
    ChemSusChem; 2020 Aug; 13(15):3835-3843. PubMed ID: 32469159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competition between CO
    Ylitalo AS; Chao H; Walker PJ; Crosthwaite J; Fitzgibbons TC; Ginzburg VG; Zhou W; Wang ZG; Di Maio E; Kornfield JA
    Ind Eng Chem Res; 2022 Aug; 61(34):12835-12844. PubMed ID: 36065446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.