These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 37181771)

  • 1. Photoelectrochemical water oxidation by a MOF/semiconductor composite.
    Gibbons B; Cairnie DR; Thomas B; Yang X; Ilic S; Morris AJ
    Chem Sci; 2023 May; 14(18):4672-4680. PubMed ID: 37181771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical Water Oxidation by a Catalyst-Modified Metal-Organic Framework Thin Film.
    Lin S; Pineda-Galvan Y; Maza WA; Epley CC; Zhu J; Kessinger MC; Pushkar Y; Morris AJ
    ChemSusChem; 2017 Feb; 10(3):514-522. PubMed ID: 27976525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insight into Metal-Organic Framework Reactivity: Chemical Water Oxidation Catalyzed by a [Ru(tpy)(dcbpy)(OH
    Lin S; Ravari AK; Zhu J; Usov PM; Cai M; Ahrenholtz SR; Pushkar Y; Morris AJ
    ChemSusChem; 2018 Jan; 11(2):464-471. PubMed ID: 29197150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoelectrochemical alcohol oxidation by mixed-linker metal-organic frameworks.
    Lin S; Cairnie DR; Davis D; Chakraborty A; Cai M; Morris AJ
    Faraday Discuss; 2021 Feb; 225():371-383. PubMed ID: 33107542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoexcitation of Fe
    Ezhov R; Ravari AK; Palenik M; Loomis A; Meira DM; Savikhin S; Pushkar Y
    ChemSusChem; 2023 Mar; 16(5):e202202124. PubMed ID: 36479638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Making oxygen with ruthenium complexes.
    Concepcion JJ; Jurss JW; Brennaman MK; Hoertz PG; Patrocinio AO; Murakami Iha NY; Templeton JL; Meyer TJ
    Acc Chem Res; 2009 Dec; 42(12):1954-65. PubMed ID: 19817345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Ce-MOFs as Photoanode Materials for the Water Oxidation Reaction: The Effect of Doping with [Ru(bpy)(dcbpy)(H
    Dileep NP; Patel J; Pushkar Y
    Inorg Chem; 2024 May; 63(18):8050-8058. PubMed ID: 38662572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical Properties of a Rhodium(III) Mono-Terpyridyl Complex and Use as a Catalyst for Light-Driven Hydrogen Evolution in Water.
    Camara F; Gavaggio T; Dautreppe B; Chauvin J; Pécaut J; Aldakov D; Collomb MN; Fortage J
    Molecules; 2022 Oct; 27(19):. PubMed ID: 36235152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Semiconductor-Mediator-Catalyst Artificial Photosynthetic System for Photoelectrochemical Water Oxidation.
    Niu F; Wang D; Williams LJ; Nayak A; Li F; Chen X; Troian-Gautier L; Huang Q; Liu Y; Brennaman MK; Papanikolas JM; Guo L; Shen S; Meyer TJ
    Chemistry; 2022 Feb; 28(10):e202102630. PubMed ID: 35113460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrocatalytic water oxidation by a molecular catalyst incorporated into a metal-organic framework thin film.
    Johnson BA; Bhunia A; Ott S
    Dalton Trans; 2017 Jan; 46(5):1382-1388. PubMed ID: 27845800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational Design of Improved Ru Containing Fe-Based Metal-Organic Framework (MOF) Photoanode for Artificial Photosynthesis.
    Patel J; Bury G; Pushkar Y
    Small; 2024 May; ():e2310106. PubMed ID: 38746966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis.
    Wang C; Xie Z; deKrafft KE; Lin W
    J Am Chem Soc; 2011 Aug; 133(34):13445-54. PubMed ID: 21780787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photocatalytic Systems for CO
    Kumagai H; Tamaki Y; Ishitani O
    Acc Chem Res; 2022 Apr; 55(7):978-990. PubMed ID: 35255207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic modification of the [Ru(II)(tpy)(bpy)(OH(2))](2+) scaffold: effects on catalytic water oxidation.
    Wasylenko DJ; Ganesamoorthy C; Henderson MA; Koivisto BD; Osthoff HD; Berlinguette CP
    J Am Chem Soc; 2010 Nov; 132(45):16094-106. PubMed ID: 20977265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CO
    Yoshino S; Takayama T; Yamaguchi Y; Iwase A; Kudo A
    Acc Chem Res; 2022 Apr; 55(7):966-977. PubMed ID: 35230087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conjugated π Electrons of MOFs Drive Charge Separation at Heterostructures Interface for Enhanced Photoelectrochemical Water Oxidation.
    Wang X; Sun W; Tian Y; Dang K; Zhang Q; Shen Z; Zhan S
    Small; 2021 Apr; 17(14):e2100367. PubMed ID: 33690986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.
    Hammarström L
    Acc Chem Res; 2015 Mar; 48(3):840-50. PubMed ID: 25675365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Photoelectrochemical Water Splitting of Black Silicon Photoanode with pH-Dependent Copper-Bipyridine Catalysts.
    Jian JX; Liao JX; Zhou MH; Yao MM; Chen YJ; Liang XW; Liu CP; Tong QX
    Chemistry; 2022 Oct; 28(57):e202201520. PubMed ID: 35848162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-Dimensional Metal Organic Framework Nanosheets as Bifunctional Catalyst for Electrochemical and Photoelectrochemical Water Oxidation.
    Liu C; Shen X; Johnson G; Zhang Y; Zhang C; Chen J; Li L; Sheehan C; Peng Z; Zhang S
    Front Chem; 2020; 8():604239. PubMed ID: 33330399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.