These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 37181830)

  • 1. Scaffolds Based on Poly(3-Hydroxybutyrate) and Its Copolymers for Bone Tissue Engineering (Review).
    Bonartsev AP; Voinova VV; Volkov AV; Muraev AA; Boyko EM; Venediktov AA; Didenko NN; Dolgalev AA
    Sovrem Tekhnologii Med; 2022; 14(5):78-90. PubMed ID: 37181830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(3-hydroxybutyrate)/hydroxyapatite/alginate scaffolds seeded with mesenchymal stem cells enhance the regeneration of critical-sized bone defect.
    Volkov AV; Muraev AA; Zharkova II; Voinova VV; Akoulina EA; Zhuikov VA; Khaydapova DD; Chesnokova DV; Menshikh KA; Dudun AA; Makhina TK; Bonartseva GA; Asfarov TF; Stamboliev IA; Gazhva YV; Ryabova VM; Zlatev LH; Ivanov SY; Shaitan KV; Bonartsev AP
    Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():110991. PubMed ID: 32994018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth of Mesenchymal Stem Cells on Poly(3-Hydroxybutyrate) Scaffolds Loaded with Simvastatin.
    Akoulina EA; Demianova IV; Zharkova II; Voinova VV; Zhuikov VA; Khaydapova DD; Chesnokova DV; Menshikh KA; Dudun AA; Makhina TK; Bonartseva GA; Volkov AV; Asfarov TF; Ivanov SY; Shaitan KV; Bonartsev AP
    Bull Exp Biol Med; 2021 May; 171(1):172-177. PubMed ID: 34046794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable and Electrically Conductive Melanin-Poly (3-Hydroxybutyrate) 3D Fibrous Scaffolds for Neural Tissue Engineering Applications.
    Agrawal L; Vimal SK; Barzaghi P; Shiga T; Terenzio M
    Macromol Biosci; 2022 Dec; 22(12):e2200315. PubMed ID: 36114714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional printing and in vitro evaluation of poly(3-hydroxybutyrate) scaffolds functionalized with osteogenic growth peptide for tissue engineering.
    Saska S; Pires LC; Cominotte MA; Mendes LS; de Oliveira MF; Maia IA; da Silva JVL; Ribeiro SJL; Cirelli JA
    Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():265-273. PubMed ID: 29752098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Biocompatibility of electrospun poly(3-hydroxybutyrate) and its composites scaffolds for tissue engineering].
    Zharkova II; Staroverova OV; Voinova VV; Andreeva NV; Shushckevich AM; Sklyanchuk ED; Kuzmicheva GM; Bespalova AE; Akulina EA; Shaitan KV; Okhlov AA
    Biomed Khim; 2014; 60(5):553-60. PubMed ID: 25386884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Piezoelectric 3-D Fibrous Poly(3-hydroxybutyrate)-Based Scaffolds Ultrasound-Mineralized with Calcium Carbonate for Bone Tissue Engineering: Inorganic Phase Formation, Osteoblast Cell Adhesion, and Proliferation.
    Chernozem RV; Surmeneva MA; Shkarina SN; Loza K; Epple M; Ulbricht M; Cecilia A; Krause B; Baumbach T; Abalymov AA; Parakhonskiy BV; Skirtach AG; Surmenev RA
    ACS Appl Mater Interfaces; 2019 May; 11(21):19522-19533. PubMed ID: 31058486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering.
    Liu Y; Tian K; Hao J; Yang T; Geng X; Zhang W
    J Mater Sci Mater Med; 2019 Apr; 30(5):53. PubMed ID: 31037512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyhydroxybutyrate (PHB) in nanoparticulate form improves physical and biological performance of scaffolds.
    Dhania S; Bernela M; Rani R; Parsad M; Kumar R; Thakur R
    Int J Biol Macromol; 2023 May; 236():123875. PubMed ID: 36870657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabricated polyhydroxyalkanoates blend scaffolds enhance cell viability and cell proliferation.
    Dhania S; Rani R; Kumar R; Thakur R
    J Biotechnol; 2023 Jan; 361():30-40. PubMed ID: 36427593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation.
    Sultana N; Wang M
    Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multifunctional Scaffolds with Improved Antimicrobial Properties and Osteogenicity Based on Piezoelectric Electrospun Fibers Decorated with Bioactive Composite Microcapsules.
    Timin AS; Muslimov AR; Zyuzin MV; Peltek OO; Karpov TE; Sergeev IS; Dotsenko AI; Goncharenko AA; Yolshin ND; Sinelnik A; Krause B; Baumbach T; Surmeneva MA; Chernozem RV; Sukhorukov GB; Surmenev RA
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):34849-34868. PubMed ID: 30230807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophoretic Deposition of Dexamethasone-Loaded Mesoporous Silica Nanoparticles onto Poly(L-Lactic Acid)/Poly(ε-Caprolactone) Composite Scaffold for Bone Tissue Engineering.
    Qiu K; Chen B; Nie W; Zhou X; Feng W; Wang W; Chen L; Mo X; Wei Y; He C
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):4137-48. PubMed ID: 26736029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly porous PHB-based bioactive scaffolds for bone tissue engineering by in situ synthesis of hydroxyapatite.
    Degli Esposti M; Chiellini F; Bondioli F; Morselli D; Fabbri P
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():286-296. PubMed ID: 30948063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved vascularisation but inefficient in vivo bone regeneration of adipose stem cells and poly-3-hydroxybutyrate-co-3-hydroxyvalerate scaffolds in xeno-free conditions.
    Paula ACC; Carvalho PH; Martins TMM; Boeloni JN; Cunha PS; Novikoff S; Correlo VM; Reis RL; Goes AM
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110301. PubMed ID: 31761156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell Behavior Changes and Enzymatic Biodegradation of Hybrid Electrospun Poly(3-hydroxybutyrate)-Based Scaffolds with an Enhanced Piezoresponse after the Addition of Reduced Graphene Oxide.
    Chernozem RV; Pariy I; Surmeneva MA; Shvartsman VV; Planckaert G; Verduijn J; Ghysels S; Abalymov A; Parakhonskiy BV; Gracey E; Gonçalves A; Mathur S; Ronsse F; Depla D; Lupascu DC; Elewaut D; Surmenev RA; Skirtach AG
    Adv Healthc Mater; 2023 Mar; 12(8):e2201726. PubMed ID: 36468909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering.
    Chen Z; Song Y; Zhang J; Liu W; Cui J; Li H; Chen F
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():341-351. PubMed ID: 28024596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering.
    Zhang S; Prabhakaran MP; Qin X; Ramakrishna S
    J Biomater Appl; 2015 May; 29(10):1394-406. PubMed ID: 25592285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Additive Manufacturing of Poly(3-hydroxybutyrate-
    Pecorini G; Braccini S; Parrini G; Chiellini F; Puppi D
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.