These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 37182253)
1. The physical encapsulation and chemical fixation of Zn during thermal treatment process of municipal solid waste incineration (MSWI) fly ash. Yuan Z; Cai G; Gao L; Wu M; Kong L; Bai J; Bai Z; Li H; Li W Waste Manag; 2023 Jul; 166():203-210. PubMed ID: 37182253 [TBL] [Abstract][Full Text] [Related]
2. Reducing volatilization of heavy metals in phosphate-pretreated municipal solid waste incineration fly ash by forming pyromorphite-like minerals. Sun Y; Zheng J; Zou L; Liu Q; Zhu P; Qian G Waste Manag; 2011 Feb; 31(2):325-30. PubMed ID: 21115339 [TBL] [Abstract][Full Text] [Related]
3. Hydration behavior and immobilization mechanism of MgO-SiO Wang B; Fan C Chemosphere; 2020 Jul; 250():126269. PubMed ID: 32126330 [TBL] [Abstract][Full Text] [Related]
4. Preparation of municipal solid waste incineration fly ash-based ceramsite and its mechanisms of heavy metal immobilization. Shao Y; Shao Y; Zhang W; Zhu Y; Dou T; Chu L; Liu Z Waste Manag; 2022 Apr; 143():54-60. PubMed ID: 35219968 [TBL] [Abstract][Full Text] [Related]
5. Immobilization mechanism of heavy metals by crystals and liquid phase during melting treatment of MSWI fly ash. Yuan Z; Cai G; Kong L; Wu M; Bai J; Bai Z; Li H; Li W J Environ Manage; 2024 Nov; 370():122750. PubMed ID: 39362160 [TBL] [Abstract][Full Text] [Related]
6. Effects and mechanism of the conditions of sintering on heavy metal leaching characteristic in municipal solid waste incineration fly ash. He S; Zhou Y; Yu P; Xia X; Yang H Environ Sci Pollut Res Int; 2022 Dec; 29(56):84886-84902. PubMed ID: 35789466 [TBL] [Abstract][Full Text] [Related]
7. Characteristics and leaching behavior of MSWI fly ash in novel solidification/stabilization binders. Fan C; Wang B; Qi Y; Liu Z Waste Manag; 2021 Jul; 131():277-285. PubMed ID: 34198181 [TBL] [Abstract][Full Text] [Related]
8. Mechanical property and heavy metal leaching behavior enhancement of municipal solid waste incineration fly ash during the pressure-assisted sintering treatment. Wang X; Zhu K; Zhang L; Li A; Chen C; Huang J; Zhang Y J Environ Manage; 2022 Jan; 301():113856. PubMed ID: 34626948 [TBL] [Abstract][Full Text] [Related]
9. Preparation of municipal solid waste incineration fly ash/ granite sawing mud ceramsite and the morphological transformation and migration properties of chlorine. Zhu Y; Shao Y; Tian C; Zhang W; Zhang T; Shao Y; Ma J Waste Manag; 2024 Jan; 173():1-9. PubMed ID: 37951037 [TBL] [Abstract][Full Text] [Related]
10. Fate of heavy metals during molten salts thermal treatment of municipal solid waste incineration fly ashes. Xie K; Hu H; Xu S; Chen T; Huang Y; Yang Y; Yang F; Yao H Waste Manag; 2020 Feb; 103():334-341. PubMed ID: 31923840 [TBL] [Abstract][Full Text] [Related]
11. Recycling municipal solid waste incineration fly ash in super-lightweight aggregates by sintering with clay and using SiC as bloating agent. Han S; Song Y; Ju T; Meng Y; Meng F; Song M; Lin L; Liu M; Li J; Jiang J Chemosphere; 2022 Nov; 307(Pt 2):135895. PubMed ID: 35932915 [TBL] [Abstract][Full Text] [Related]
12. Solidification of municipal solid waste incineration fly ash and immobilization of heavy metals using waste glass in alkaline activation system. Tian X; Rao F; Li C; Ge W; Lara NO; Song S; Xia L Chemosphere; 2021 Nov; 283():131240. PubMed ID: 34182622 [TBL] [Abstract][Full Text] [Related]
13. Novel cost-effective oxygen-enriched melting method for MSWI fly ash. Liu Y; Li B; Chai X J Air Waste Manag Assoc; 2024 Jan; 74(1):1-10. PubMed ID: 37967101 [TBL] [Abstract][Full Text] [Related]
15. Process exploration for scale melting and solidifying of municipal solid waste incineration (MSWI) fly ash by horizontal cyclone melting furnace. Bai M; Du C; Zhao Y; Wang D; Zhang W; Qiu P Waste Manag; 2024 Dec; 189():127-136. PubMed ID: 39186920 [TBL] [Abstract][Full Text] [Related]
16. A comparative study on characteristics and leaching toxicity of fluidized bed and grate furnace MSWI fly ash. Fan C; Wang B; Ai H; Liu Z J Environ Manage; 2022 Mar; 305():114345. PubMed ID: 34952395 [TBL] [Abstract][Full Text] [Related]
17. Vitrification of municipal solid waste incineration fly ash with B Gao J; Dong C; Zhao Y; Hu X; Qin W; Wang X; Zhang J; Xue J; Zhang X Waste Manag; 2020 Feb; 102():932-938. PubMed ID: 31855693 [TBL] [Abstract][Full Text] [Related]
18. Water washing effects on metals emission reduction during municipal solid waste incinerator (MSWI) fly ash melting process. Chiang KY; Hu YH Waste Manag; 2010 May; 30(5):831-8. PubMed ID: 20079621 [TBL] [Abstract][Full Text] [Related]
19. Integrated thermal behavior and compounds transition mechanism of municipal solid waste incineration fly ash during thermal treatment process. Wang X; Ji G; Zhu K; Li C; Zhang Y; Li A Chemosphere; 2021 Feb; 264(Pt 1):128406. PubMed ID: 33010627 [TBL] [Abstract][Full Text] [Related]
20. Thermal co-treatment of aluminum dross and municipal solid waste incineration fly ash: Mineral transformation, crusting prevention, detoxification, and low-carbon cementitious material preparation. Li J; Jia A; Hou X; Wang X; Mao Y; Wang W J Environ Manage; 2023 Mar; 329():117090. PubMed ID: 36584517 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]