These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37182317)

  • 1. Modeling for nonlinear acoustic imaging of an isolated crack via standing waves in a 2D solid.
    Aleshin VV; Verma R; Truyaert K
    Ultrasonics; 2023 Aug; 133():107023. PubMed ID: 37182317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two dimensional modeling of elastic wave propagation in solids containing cracks with rough surfaces and friction - Part II: Numerical implementation.
    Delrue S; Aleshin V; Truyaert K; Bou Matar O; Van Den Abeele K
    Ultrasonics; 2018 Jan; 82():19-30. PubMed ID: 28734190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two dimensional modeling of elastic wave propagation in solids containing cracks with rough surfaces and friction - Part I: Theoretical background.
    Aleshin V; Delrue S; Trifonov A; Bou Matar O; Van Den Abeele K
    Ultrasonics; 2018 Jan; 82():11-18. PubMed ID: 28734189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of nonlinear interactions between guided waves and fatigue cracks using local interaction simulation approach.
    Shen Y; Cesnik CE
    Ultrasonics; 2017 Feb; 74():106-123. PubMed ID: 27770666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and Numerical Investigation of the Micro-Crack Damage in Elastic Solids by Two-Way Collinear Mixing Method.
    Liu H; Zhao Y; Zhang H; Deng M; Hu N; Bi X
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33804180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced numerical simulations considering crack orientation for fatigue damage quantification using nonlinear guided waves.
    Lee YF; Lu Y
    Ultrasonics; 2022 Aug; 124():106738. PubMed ID: 35358841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element modeling of nonlinear acoustics/ultrasonics for the detection of closed delaminations in composites.
    Singh AK; Chen BY; Tan VB; Tay TE; Lee HP
    Ultrasonics; 2017 Feb; 74():89-98. PubMed ID: 27764651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical and numerical modeling of nonlinear lamb wave interaction with a breathing crack with low-frequency modulation.
    Yuan P; Xu X; Glorieux C; Jia K; Chen J; Chen X; Yin A
    Ultrasonics; 2024 May; 140():107306. PubMed ID: 38579487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An iterative method to evaluate one-dimensional pulsed nonlinear elastic wavefields and mixing of elastic waves in solids.
    Selvam S; Volker A; van Neer P; de Jong N; Verweij MD
    J Acoust Soc Am; 2022 May; 151(5):3316. PubMed ID: 35649942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wave envelopes method for description of nonlinear acoustic wave propagation.
    Wójcik J; Nowicki A; Lewin PA; Bloomfield PE; Kujawska T; Filipczyński L
    Ultrasonics; 2006 Jul; 44(3):310-29. PubMed ID: 16780911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fully noncontact inspection of closed surface crack with nonlinear laser ultrasonic testing method.
    Kou X; Pei C; Chen Z
    Ultrasonics; 2021 Jul; 114():106426. PubMed ID: 33812273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical simulation of nonlinear Lamb waves used in a thin plate for detecting buried micro-cracks.
    Wan X; Zhang Q; Xu G; Tse PW
    Sensors (Basel); 2014 May; 14(5):8528-46. PubMed ID: 24834908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytical insight into "breathing" crack-induced acoustic nonlinearity with an application to quantitative evaluation of contact cracks.
    Wang K; Liu M; Su Z; Yuan S; Fan Z
    Ultrasonics; 2018 Aug; 88():157-167. PubMed ID: 29660569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-action of propagating and standing Lamb waves in the plates exhibiting hysteretic nonlinearity: Nonlinear zero-group velocity modes.
    Gusev VE; Lomonosov AM; Ni C; Shen Z
    Ultrasonics; 2017 Sep; 80():34-46. PubMed ID: 28499123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A numerical model for the study of the difference frequency generated from nonlinear mixing of standing ultrasonic waves in bubbly liquids.
    Tejedor Sastre MT; Vanhille C
    Ultrason Sonochem; 2017 Jan; 34():881-888. PubMed ID: 27773316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonreciprocal acoustics and dynamics in the in-plane oscillations of a geometrically nonlinear lattice.
    Zhang Z; Koroleva I; Manevitch LI; Bergman LA; Vakakis AF
    Phys Rev E; 2016 Sep; 94(3-1):032214. PubMed ID: 27739799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The zero-frequency component of bulk waves in solids with randomly distributed micro-cracks.
    Sun X; Liu H; Zhao Y; Qu J; Deng M; Hu N
    Ultrasonics; 2020 Sep; 107():106172. PubMed ID: 32450428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling nonlinearity of guided ultrasonic waves in fatigued materials using a nonlinear local interaction simulation approach and a spring model.
    Radecki R; Su Z; Cheng L; Packo P; Staszewski WJ
    Ultrasonics; 2018 Mar; 84():272-289. PubMed ID: 29179158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theory of non-collinear interactions of acoustic waves in an isotropic material with hysteretic quadratic nonlinearity.
    Gusev V
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 1):80-94. PubMed ID: 11831826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of crack induced nonlinear elasticity using the combined finite-discrete element method.
    Gao K; Rougier E; Guyer RA; Lei Z; Johnson PA
    Ultrasonics; 2019 Sep; 98():51-61. PubMed ID: 31200274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.