These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 37182403)

  • 1. A multi-modal wildfire prediction and early-warning system based on a novel machine learning framework.
    Bhowmik RT; Jung YS; Aguilera JA; Prunicki M; Nadeau K
    J Environ Manage; 2023 Sep; 341():117908. PubMed ID: 37182403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic prediction of global monthly burned area with hybrid deep neural networks.
    Zhang G; Wang M; Liu K
    Ecol Appl; 2022 Jul; 32(5):e2610. PubMed ID: 35366041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning and Transformer Approaches for UAV-Based Wildfire Detection and Segmentation.
    Ghali R; Akhloufi MA; Mseddi WS
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution mapping of wildfire drivers in California based on machine learning.
    Qiu L; Chen J; Fan L; Sun L; Zheng C
    Sci Total Environ; 2022 Aug; 833():155155. PubMed ID: 35413339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial and temporal pattern of wildfires in California from 2000 to 2019.
    Li S; Banerjee T
    Sci Rep; 2021 Apr; 11(1):8779. PubMed ID: 33888784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting hourly PM
    Yu M; Masrur A; Blaszczak-Boxe C
    Sci Total Environ; 2023 Feb; 860():160446. PubMed ID: 36436649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a Forest Fire Early Alert System through a Deep 3D-CNN Structure and a WRF-CNN Bias Correction.
    Casallas A; Jiménez-Saenz C; Torres V; Quirama-Aguilar M; Lizcano A; Lopez-Barrera EA; Ferro C; Celis N; Arenas R
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning models accurately predict ozone exposure during wildfire events.
    Watson GL; Telesca D; Reid CE; Pfister GG; Jerrett M
    Environ Pollut; 2019 Nov; 254(Pt A):112792. PubMed ID: 31421571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning-based observation-constrained projections reveal elevated global socioeconomic risks from wildfire.
    Yu Y; Mao J; Wullschleger SD; Chen A; Shi X; Wang Y; Hoffman FM; Zhang Y; Pierce E
    Nat Commun; 2022 Mar; 13(1):1250. PubMed ID: 35318306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatio-temporal feature attribution of European summer wildfires with Explainable Artificial Intelligence (XAI).
    Li H; Vulova S; Rocha AD; Kleinschmit B
    Sci Total Environ; 2024 Mar; 916():170330. PubMed ID: 38278254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near Real-Time Wildfire Progression Monitoring with Sentinel-1 SAR Time Series and Deep Learning.
    Ban Y; Zhang P; Nascetti A; Bevington AR; Wulder MA
    Sci Rep; 2020 Jan; 10(1):1322. PubMed ID: 31992723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting wildfires in Algerian forests using machine learning models.
    Zaidi A
    Heliyon; 2023 Jul; 9(7):e18064. PubMed ID: 37519679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A wildfire growth prediction and evaluation approach using Landsat and MODIS data.
    Radočaj D; Jurišić M; Gašparović M
    J Environ Manage; 2022 Feb; 304():114351. PubMed ID: 35021596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Explainable artificial intelligence (XAI) detects wildfire occurrence in the Mediterranean countries of Southern Europe.
    Cilli R; Elia M; D'Este M; Giannico V; Amoroso N; Lombardi A; Pantaleo E; Monaco A; Sanesi G; Tangaro S; Bellotti R; Lafortezza R
    Sci Rep; 2022 Sep; 12(1):16349. PubMed ID: 36175583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Associations between respiratory health and ozone and fine particulate matter during a wildfire event.
    Reid CE; Considine EM; Watson GL; Telesca D; Pfister GG; Jerrett M
    Environ Int; 2019 Aug; 129():291-298. PubMed ID: 31146163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Has COVID-19 halted winter-spring wildfires in the Mediterranean? Insights for wildfire science under a pandemic context.
    Rodrigues M; Gelabert PJ; Ameztegui A; Coll L; Vega-García C
    Sci Total Environ; 2021 Apr; 765():142793. PubMed ID: 33092845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of wildfires on air pollution and health across land use categories in Brazil over a 16-year period.
    Cobelo I; Castelhano FJ; Borge R; Roig HL; Adams M; Amini H; Koutrakis P; Réquia WJ
    Environ Res; 2023 May; 224():115522. PubMed ID: 36813066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine Learning Methods and Synthetic Data Generation to Predict Large Wildfires.
    Pérez-Porras FJ; Triviño-Tarradas P; Cima-Rodríguez C; Meroño-de-Larriva JE; García-Ferrer A; Mesas-Carrascosa FJ
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34073312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human activity, daylight saving time and wildfire occurrence.
    Kountouris Y
    Sci Total Environ; 2020 Jul; 727():138044. PubMed ID: 32315901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Wildfire Smoke Detection System Using Unmanned Aerial Vehicle Images Based on the Optimized YOLOv5.
    Mukhiddinov M; Abdusalomov AB; Cho J
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.