These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 37182681)
1. Performance of production of polyhydroxyalkanoates from food waste fermentation with Rhodopseudomonas palustris. Dan T; Jing H; Shen T; Zhu J; Liu Y Bioresour Technol; 2023 Oct; 385():129165. PubMed ID: 37182681 [TBL] [Abstract][Full Text] [Related]
2. Production of polyhydroxyalkanoates (PHAs) by Vu DH; Wainaina S; Taherzadeh MJ; Ã…kesson D; Ferreira JA Bioengineered; 2021 Dec; 12(1):2480-2498. PubMed ID: 34115556 [TBL] [Abstract][Full Text] [Related]
3. Production of polyhydroxyalkanoates by halotolerant bacteria with volatile fatty acids from food waste as carbon source. Wang P; Chen XT; Qiu YQ; Liang XF; Cheng MM; Wang YJ; Ren LH Biotechnol Appl Biochem; 2020 May; 67(3):307-316. PubMed ID: 31702835 [TBL] [Abstract][Full Text] [Related]
4. Bioconversion of waste activated sludge hydrolysate into polyhydroxyalkanoates using Paracoccus sp. TOH: Volatile fatty acids generation and fermentation strategy. Zhao L; Zhang J; Xu Z; Cai S; Chen L; Cai T; Ji XM Bioresour Technol; 2022 Nov; 363():127939. PubMed ID: 36100183 [TBL] [Abstract][Full Text] [Related]
5. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxvalerate) from volatile fatty acids by Cupriavidus necator. Cai F; Lin M; Jin W; Chen C; Liu G J Basic Microbiol; 2023 Feb; 63(2):128-139. PubMed ID: 36192143 [TBL] [Abstract][Full Text] [Related]
6. Effects of different temperatures and pH values on volatile fatty acids production during codigestion of food waste and thermal-hydrolysed sewage sludge and subsequent volatile fatty acids for polyhydroxyalkanoates production. Gong X; Wu M; Jiang Y; Wang H Bioresour Technol; 2021 Aug; 333():125149. PubMed ID: 33901914 [TBL] [Abstract][Full Text] [Related]
7. Optimal production of polyhydroxyalkanoates (PHA) in activated sludge fed by volatile fatty acids (VFAs) generated from alkaline excess sludge fermentation. Mengmeng C; Hong C; Qingliang Z; Shirley SN; Jie R Bioresour Technol; 2009 Feb; 100(3):1399-405. PubMed ID: 18945612 [TBL] [Abstract][Full Text] [Related]
8. Polyhydroxyalkanoate production from fermented volatile fatty acids: effect of pH and feeding regimes. Chen H; Meng H; Nie Z; Zhang M Bioresour Technol; 2013 Jan; 128():533-8. PubMed ID: 23201909 [TBL] [Abstract][Full Text] [Related]
9. Potential of food waste hydrolysate as an alternative carbon source for microbial oil synthesis. Xu Y; Wang X; Li Z; Cheng S; Jiang J Bioresour Technol; 2022 Jan; 344(Pt B):126312. PubMed ID: 34767904 [TBL] [Abstract][Full Text] [Related]
10. Production of polyhydroxyalkanoate (PHA) by Ralstonia eutropha JMP 134 with volatile fatty acids from palm oil mill effluent as precursors. Setiadi T; Aznury M; Trianto A; Pancoro A Water Sci Technol; 2015; 72(11):1889-95. PubMed ID: 26606081 [TBL] [Abstract][Full Text] [Related]
11. Biosynthesis of polyhydroxyalkanoate by Gamma proteobacterium WD-3 from volatile fatty acids. Chen Z; Li Y; Wen Q; Zhang H Chemosphere; 2011 Feb; 82(8):1209-13. PubMed ID: 21129764 [TBL] [Abstract][Full Text] [Related]
12. Thauera sp. Sel9, a new bacterial strain for polyhydroxyalkanoates production from volatile fatty acids. Andreolli M; Scerbacov V; Frison N; Zaccone C; Lampis S N Biotechnol; 2022 Dec; 72():71-79. PubMed ID: 36191843 [TBL] [Abstract][Full Text] [Related]
13. Towards biodegradable polyhydroxyalkanoate production from wood waste: Using volatile fatty acids as conversion medium. Li D; Yin F; Ma X Bioresour Technol; 2020 Mar; 299():122629. PubMed ID: 31881436 [TBL] [Abstract][Full Text] [Related]
14. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) production from engineered Ralstonia eutropha using synthetic and anaerobically digested food waste derived volatile fatty acids. Bhatia SK; Gurav R; Choi TR; Jung HR; Yang SY; Song HS; Jeon JM; Kim JS; Lee YK; Yang YH Int J Biol Macromol; 2019 Jul; 133():1-10. PubMed ID: 30986452 [TBL] [Abstract][Full Text] [Related]
15. Pure cultures for synthetic culture development: Next level municipal waste treatment for polyhydroxyalkanoates production. Khatami K; Perez-Zabaleta M; Cetecioglu Z J Environ Manage; 2022 Mar; 305():114337. PubMed ID: 34972045 [TBL] [Abstract][Full Text] [Related]
16. Polyhydroxyalkanoate (PHA) production in open mixed cultures using waste activated sludge as biomass. Munir S; Jamil N Arch Microbiol; 2020 Sep; 202(7):1907-1913. PubMed ID: 32448962 [TBL] [Abstract][Full Text] [Related]
17. Insights into enhanced polyhydroxyalkanoate production by the synergistic use of waste wood hydrolysate and volatile fatty acids by mixed microbial cultures. Li D; Ma X; Li J; Sun B Bioresour Technol; 2021 Oct; 337():125488. PubMed ID: 34320767 [TBL] [Abstract][Full Text] [Related]
18. Production of polyhydroxyalkanoate (PHA) copolymer from food waste using mixed culture for carboxylate production and Pseudomonas putida for PHA synthesis. Chandra R; Thakor A; Mekonnen TH; Charles TC; Lee HS J Environ Manage; 2023 Jun; 336():117650. PubMed ID: 36878060 [TBL] [Abstract][Full Text] [Related]
19. A review on the conversion of volatile fatty acids to polyhydroxyalkanoates using dark fermentative effluents from hydrogen production. Kumar G; Ponnusamy VK; Bhosale RR; Shobana S; Yoon JJ; Bhatia SK; Rajesh Banu J; Kim SH Bioresour Technol; 2019 Sep; 287():121427. PubMed ID: 31104939 [TBL] [Abstract][Full Text] [Related]
20. Autotrophic production of polyhydroxyalkanoates using acidogenic-derived H Costa P; Basaglia M; Casella S; Kennes C; Favaro L; Carmen Veiga M Bioresour Technol; 2023 Dec; 390():129880. PubMed ID: 37852509 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]