BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 37182840)

  • 1. Using Artificial Intelligence to Identify Tumor Microenvironment Heterogeneity in Non-Small Cell Lung Cancers.
    DuCote TJ; Naughton KJ; Skaggs EM; Bocklage TJ; Allison DB; Brainson CF
    Lab Invest; 2023 Aug; 103(8):100176. PubMed ID: 37182840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial Intelligence-Powered Hematoxylin and Eosin Analyzer Reveals Distinct Immunologic and Mutational Profiles among Immune Phenotypes in Non-Small-Cell Lung Cancer.
    Park J; Cho HG; Park J; Lee G; Kim HS; Paeng K; Song S; Park G; Ock CY; Chae YK
    Am J Pathol; 2022 Apr; 192(4):701-711. PubMed ID: 35339231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated annotations of epithelial cells and stroma in hematoxylin-eosin-stained whole-slide images using cytokeratin re-staining.
    Brázdil T; Gallo M; Nenutil R; Kubanda A; Toufar M; Holub P
    J Pathol Clin Res; 2022 Mar; 8(2):129-142. PubMed ID: 34716754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of tumor-infiltrating lymphocytes using routine H&E slides predicts patient survival in resected non-small cell lung cancer.
    Rakaee M; Kilvaer TK; Dalen SM; Richardsen E; Paulsen EE; Hald SM; Al-Saad S; Andersen S; Donnem T; Bremnes RM; Busund LT
    Hum Pathol; 2018 Sep; 79():188-198. PubMed ID: 29885403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning-based tumor microenvironment segmentation is predictive of tumor mutations and patient survival in non-small-cell lung cancer.
    Rączkowska A; Paśnik I; Kukiełka M; Nicoś M; Budzinska MA; Kucharczyk T; Szumiło J; Krawczyk P; Crosetto N; Szczurek E
    BMC Cancer; 2022 Sep; 22(1):1001. PubMed ID: 36131239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The prognostic significance of tumor-infiltrating lymphocytes assessment with hematoxylin and eosin sections in resected primary lung adenocarcinoma.
    Kim A; Lee SJ; Ahn J; Park WY; Shin DH; Lee CH; Kwon H; Jeong YJ; Ahn HY; I H; Kim YD; Cho JS
    PLoS One; 2019; 14(11):e0224430. PubMed ID: 31743333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utility of artificial intelligence with deep learning of hematoxylin and eosin-stained whole slide images to predict lymph node metastasis in T1 colorectal cancer using endoscopically resected specimens; prediction of lymph node metastasis in T1 colorectal cancer.
    Song JH; Hong Y; Kim ER; Kim SH; Sohn I
    J Gastroenterol; 2022 Sep; 57(9):654-666. PubMed ID: 35802259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation of immunohistochemical staining p63 and TTF-1 with EGFR and K-ras mutational spectrum and diagnostic reproducibility in non small cell lung carcinoma.
    Thunnissen E; Boers E; Heideman DA; Grünberg K; Kuik DJ; Noorduin A; van Oosterhout M; Pronk D; Seldenrijk C; Sietsma H; Smit EF; van Suylen R; von der Thusen J; Vrugt B; Wiersma A; Witte BI; den Bakker M
    Virchows Arch; 2012 Dec; 461(6):629-38. PubMed ID: 23064619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency and distribution of occult micrometastases in lymph nodes of patients with non-small-cell lung carcinoma.
    Chen ZL; Perez S; Holmes EC; Wang HJ; Coulson WF; Wen DR; Cochran AJ
    J Natl Cancer Inst; 1993 Mar; 85(6):493-8. PubMed ID: 7680382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of interobserver agreement in lung cancer assessment: hematoxylin-eosin diagnostic reproducibility for non-small cell lung cancer: the 2004 World Health Organization classification and therapeutically relevant subsets.
    Grilley-Olson JE; Hayes DN; Moore DT; Leslie KO; Wilkerson MD; Qaqish BF; Hayward MC; Cabanski CR; Yin X; Socinski MA; Stinchcombe TE; Thorne LB; Allen TC; Banks PM; Beasley MB; Borczuk AC; Cagle PT; Christensen R; Colby TV; Deblois GG; Elmberger G; Graziano P; Hart CF; Jones KD; Maia DM; Miller CR; Nance KV; Travis WD; Funkhouser WK
    Arch Pathol Lab Med; 2013 Jan; 137(1):32-40. PubMed ID: 22583114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial Intelligence-Powered Prediction of
    Terada Y; Takahashi T; Hayakawa T; Ono A; Kawata T; Isaka M; Muramatsu K; Tone K; Kodama H; Imai T; Notsu A; Mori K; Ohde Y; Nakajima T; Sugino T; Takahashi T
    JCO Clin Cancer Inform; 2022 Sep; 6():e2200070. PubMed ID: 36162012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating AI-Powered Digital Pathology and Imaging Mass Cytometry Identifies Key Classifiers of Tumor Cells, Stroma, and Immune Cells in Non-Small Cell Lung Cancer.
    Rigamonti A; Viatore M; Polidori R; Rahal D; Erreni M; Fumagalli MR; Zanini D; Doni A; Putignano AR; Bossi P; Voulaz E; Alloisio M; Rossi S; Zucali PA; Santoro A; Balzano V; Nisticò P; Feuerhake F; Mantovani A; Locati M; Marchesi F
    Cancer Res; 2024 Apr; 84(7):1165-1177. PubMed ID: 38315789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological diversity of cancer cells predicts prognosis across tumor types.
    Sali R; Jiang Y; Attaranzadeh A; Holmes B; Li R
    J Natl Cancer Inst; 2024 Apr; 116(4):555-564. PubMed ID: 37982756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of Artificial Intelligence in Lung Pathology.
    Hartman DJ
    Surg Pathol Clin; 2024 Jun; 17(2):321-328. PubMed ID: 38692814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliable Gene Expression Profiling from Small and Hematoxylin and Eosin-Stained Clinical Formalin-Fixed, Paraffin-Embedded Specimens Using the HTG EdgeSeq Platform.
    Qi Z; Wang L; Desai K; Cogswell J; Stern M; Lawson B; Kerkar SP; Vitazka P
    J Mol Diagn; 2019 Sep; 21(5):796-807. PubMed ID: 31255795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct identification of ALK and ROS1 fusions in non-small cell lung cancer from hematoxylin and eosin-stained slides using deep learning algorithms.
    Mayer C; Ofek E; Fridrich DE; Molchanov Y; Yacobi R; Gazy I; Hayun I; Zalach J; Paz-Yaacov N; Barshack I
    Mod Pathol; 2022 Dec; 35(12):1882-1887. PubMed ID: 36057739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionizing Radiation-Induced Tumor Cell-Derived Microparticles Prevent Lung Metastasis by Remodeling the Pulmonary Immune Microenvironment.
    Zhai D; Huang J; Hu Y; Wan C; Sun Y; Meng J; Zi H; Lu L; He Q; Hu Y; Jin H; Yang K
    Int J Radiat Oncol Biol Phys; 2022 Nov; 114(3):502-515. PubMed ID: 35840114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tumor-infiltrating lymphocyte enrichment predicted by CT radiomics analysis is associated with clinical outcomes of non-small cell lung cancer patients receiving immune checkpoint inhibitors.
    Park C; Jeong DY; Choi Y; Oh YJ; Kim J; Ryu J; Paeng K; Lee SH; Ock CY; Lee HY
    Front Immunol; 2022; 13():1038089. PubMed ID: 36660547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fully Automated Tumor Bud Assessment in Hematoxylin and Eosin-Stained Whole Slide Images of Colorectal Cancer.
    Bokhorst JM; Ciompi F; Öztürk SK; Oguz Erdogan AS; Vieth M; Dawson H; Kirsch R; Simmer F; Sheahan K; Lugli A; Zlobec I; van der Laak J; Nagtegaal ID
    Mod Pathol; 2023 Sep; 36(9):100233. PubMed ID: 37257824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comment on "Artificial intelligence to predict oncological outcome directly from hematoxylin and eosin-stained slides in urology: a systematic review".
    Rivero Belenchón I; Checcucci E; Gómez Rivas J; Puliatti S; Taratkin M; Kowalewski KF; Rodler S; Veccia A; Medina Lopez RA; Cacciamani G;
    Minerva Urol Nephrol; 2022 Dec; 74(6):810-812. PubMed ID: 36629813
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.