These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 37182934)
1. High-strength and functional nanocellulose filaments made by direct wet spinning from low concentration suspensions. Mao H; Niu P; Zhang Z; Kong Y; Wang WJ; Yang X Carbohydr Polym; 2023 Aug; 313():120881. PubMed ID: 37182934 [TBL] [Abstract][Full Text] [Related]
2. Absorbent Filaments from Cellulose Nanofibril Hydrogels through Continuous Coaxial Wet Spinning. Lundahl MJ; Klar V; Ajdary R; Norberg N; Ago M; Cunha AG; Rojas OJ ACS Appl Mater Interfaces; 2018 Aug; 10(32):27287-27296. PubMed ID: 30014693 [TBL] [Abstract][Full Text] [Related]
3. Strength and Water Interactions of Cellulose I Filaments Wet-Spun from Cellulose Nanofibril Hydrogels. Lundahl MJ; Cunha AG; Rojo E; Papageorgiou AC; Rautkari L; Arboleda JC; Rojas OJ Sci Rep; 2016 Jul; 6():30695. PubMed ID: 27465828 [TBL] [Abstract][Full Text] [Related]
4. Preparation and Characteristics of Wet-Spun Filament Made of Cellulose Nanofibrils with Different Chemical Compositions. Park CW; Park JS; Han SY; Lee EA; Kwon GJ; Seo YH; Gwon JG; Lee SY; Lee SH Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32325798 [TBL] [Abstract][Full Text] [Related]
5. Preparation and Properties of Wet-Spun Microcomposite Filaments from Various CNFs and Alginate. Park JS; Park CW; Han SY; Lee EA; Cindradewi AW; Kim JK; Kwon GJ; Seo YH; Yoo WJ; Gwon JY; Lee SH Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34073715 [TBL] [Abstract][Full Text] [Related]
7. Nanocellulose-Based Hollow Fibers for Advanced Water and Moisture Management. Niu P; Mao H; Lim KH; Wang Q; Wang WJ; Yang X ACS Nano; 2023 Aug; 17(15):14686-14694. PubMed ID: 37459214 [TBL] [Abstract][Full Text] [Related]
8. Functional Bionanocomposite Fibers of Chitosan Filled with Cellulose Nanofibers Obtained by Gel Spinning. Marquez-Bravo S; Doench I; Molina P; Bentley FE; Tamo AK; Passieux R; Lossada F; David L; Osorio-Madrazo A Polymers (Basel); 2021 May; 13(10):. PubMed ID: 34068136 [TBL] [Abstract][Full Text] [Related]
9. Cellulose Nanofiber Films and Their Vibration Energy Harvesting. Lee SH; Kim J Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36016041 [TBL] [Abstract][Full Text] [Related]
10. Dry-Spun Neat Cellulose Nanofibril Filaments: Influence of Drying Temperature and Nanofibril Structure on Filament Properties. Ghasemi S; Tajvidi M; Bousfield DW; Gardner DJ; Gramlich WM Polymers (Basel); 2017 Aug; 9(9):. PubMed ID: 30965696 [TBL] [Abstract][Full Text] [Related]
11. Toward continuous high-performance bacterial cellulose macrofibers by implementing grading-stretching in spinning. Zhao X; Chen S; Wu Z; Sheng N; Zhang M; Liang Q; Han Z; Wang H Carbohydr Polym; 2022 Apr; 282():119133. PubMed ID: 35123765 [TBL] [Abstract][Full Text] [Related]
12. Heterogeneous Acetylation of Plant Fibers into Micro- and Nanocelluloses for the Synthesis of Highly Stretchable, Tough, and Water-Resistant Co-continuous Filaments via Wet-Spinning. Tripathi A; Ago M; Khan SA; Rojas OJ ACS Appl Mater Interfaces; 2018 Dec; 10(51):44776-44786. PubMed ID: 30484313 [TBL] [Abstract][Full Text] [Related]
13. Hierarchical Assembly of Nanocellulose into Filaments by Flow-Assisted Alignment and Interfacial Complexation: Conquering the Conflicts between Strength and Toughness. Cai Y; Geng L; Chen S; Shi S; Hsiao BS; Peng X ACS Appl Mater Interfaces; 2020 Jul; 12(28):32090-32098. PubMed ID: 32551523 [TBL] [Abstract][Full Text] [Related]
14. High-strength cellulose nanofiber/graphene oxide hybrid filament made by continuous processing and its humidity monitoring. Kim HC; Panicker PS; Kim D; Adil S; Kim J Sci Rep; 2021 Jun; 11(1):13611. PubMed ID: 34193954 [TBL] [Abstract][Full Text] [Related]
15. Macrofibers with High Mechanical Performance Based on Aligned Bacterial Cellulose Nanofibers. Yao J; Chen S; Chen Y; Wang B; Pei Q; Wang H ACS Appl Mater Interfaces; 2017 Jun; 9(24):20330-20339. PubMed ID: 28045246 [TBL] [Abstract][Full Text] [Related]
16. Hollow Filaments Synthesized by Dry-Jet Wet Spinning of Cellulose Nanofibrils: Structural Properties and Thermoregulation with Phase-Change Infills. Reyes G; Ajdary R; Yazdani MR; Rojas OJ ACS Appl Polym Mater; 2022 Apr; 4(4):2908-2916. PubMed ID: 35425902 [TBL] [Abstract][Full Text] [Related]
17. Mechanically strong all-chitin filaments: Wet-spinning of β-chitin nanofibers in aqueous NaOH. Chen C; Wu Q; Zao Y; Ma J; Wan Z; Li S; Li D; Jin Y Int J Biol Macromol; 2022 Dec; 222(Pt B):3243-3249. PubMed ID: 36252632 [TBL] [Abstract][Full Text] [Related]
18. Wet-Spun Composite Filaments from Lignocellulose Nanofibrils/Alginate and Their Physico-Mechanical Properties. Park JS; Han SY; Bandi R; Lee EA; Cindradewi AW; Kim JK; Kwon GJ; Seo YH; Youe WJ; Gwon J; Park CW; Lee SH Polymers (Basel); 2021 Sep; 13(17):. PubMed ID: 34503015 [TBL] [Abstract][Full Text] [Related]
19. Process Optimization for Manufacturing PAN-Based Conductive Yarn with Carbon Nanomaterials through Wet Spinning. Kim H; Moon H; Lim D; Jeong W Polymers (Basel); 2021 Oct; 13(20):. PubMed ID: 34685301 [TBL] [Abstract][Full Text] [Related]
20. Engineering strong man-made cellulosic fibers: a review of the wet spinning process based on cellulose nanofibrils. Zhang Z; Kong Y; Gao J; Han X; Lian Z; Liu J; Wang WJ; Yang X Nanoscale; 2024 Mar; 16(13):6383-6401. PubMed ID: 38465763 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]