These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37182942)

  • 41. Behavior of cellulose and xylan in aqueous ammonia pretreatment.
    Xin D; Jia L; Zhao C; Zhang J
    Appl Biochem Biotechnol; 2014 Dec; 174(7):2626-38. PubMed ID: 25245678
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biopolymer nanocomposite films reinforced with nanocellulose whiskers.
    Saxena A; Foston M; Kassaee M; Elder TJ; Ragauskas AJ
    J Nanosci Nanotechnol; 2012 Jan; 12(1):218-26. PubMed ID: 22523969
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Xylan-cellulose thin film platform for assessing xylanase activity.
    Schaubeder JB; Ravn JL; Orzan EJQ; Manfrão-Netto JHC; Geijer C; Nypelö T; Spirk S
    Carbohydr Polym; 2022 Oct; 294():119737. PubMed ID: 35868741
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Carboxymethylated-, hydroxypropylsulfonated- and quaternized xylan derivative films.
    Simkovic I; Kelnar I; Uhliariková I; Mendichi R; Mandalika A; Elder T
    Carbohydr Polym; 2014 Sep; 110():464-71. PubMed ID: 24906780
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions.
    Ahola S; Salmi J; Johansson LS; Laine J; Osterberg M
    Biomacromolecules; 2008 Apr; 9(4):1273-82. PubMed ID: 18307305
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Extraction and characterization of xylan from sugarcane tops as a potential commercial substrate.
    Khaire KC; Sharma K; Thakur A; Moholkar VS; Goyal A
    J Biosci Bioeng; 2021 Jun; 131(6):647-654. PubMed ID: 33676868
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrically Conductive Thin Films Based on Nanofibrillated Cellulose: Interactions with Water and Applications in Humidity Sensing.
    Solin K; Borghei M; Sel O; Orelma H; Johansson LS; Perrot H; Rojas OJ
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36437-36448. PubMed ID: 32672936
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Direct Functionalization of Polysaccharide-Based Xylan Phenyl Carbonate Nanoparticles with Tumor Cell Specific Antibodies.
    Bilemjian V; Lin Y; Wan W; Egri G; Huls G; Heinze T; Bremer E; Gericke M; Dähne L
    Chembiochem; 2024 Mar; 25(5):e202300828. PubMed ID: 38236789
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Solid-state 13C NMR spectroscopy studies of xylans in the cell wall of Palmaria palmata (L. Kuntze, Rhodophyta).
    Lahaye M; Rondeau-Mouro C; Deniaud E; Buléon A
    Carbohydr Res; 2003 Jul; 338(15):1559-69. PubMed ID: 12860427
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fabrication of antimicrobial composite films based on xylan from pulping process for food packaging.
    Yang YC; Mei XW; Hu YJ; Su LY; Bian J; Li MF; Peng F; Sun RC
    Int J Biol Macromol; 2019 Aug; 134():122-130. PubMed ID: 31071408
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electropolymerized films formed from the amphiphilic decyl esters of D- and L-tyrosine compared to L-tyrosine using the electrochemical quartz crystal microbalance.
    Marx KA; Zhou T; Long D
    Biomacromolecules; 2005; 6(3):1698-706. PubMed ID: 15877396
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface.
    Marx KA
    Biomacromolecules; 2003; 4(5):1099-120. PubMed ID: 12959572
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis, characterization and enzymatic surface roughing of cellulose/xylan composite films.
    Long L; Shen F; Wang F; Tian D; Hu J
    Carbohydr Polym; 2019 Jun; 213():121-127. PubMed ID: 30879651
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of the degree of polymerization of xylooligomers produced by flowthrough hydrolysis of pure xylan and corn stover with water.
    Yang B; Wyman CE
    Bioresour Technol; 2008 Sep; 99(13):5756-62. PubMed ID: 18096381
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Moisture absorption and absorption kinetics in polyelectrolyte films: influence of film thickness.
    Vogt BD; Soles CL; Lee HJ; Lin EK; Wu WL
    Langmuir; 2004 Feb; 20(4):1453-8. PubMed ID: 15803734
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adsorption of arabinoxylan on cellulosic surfaces: influence of degree of substitution and substitution pattern on adsorption characteristics.
    Köhnke T; Ostlund A; Brelid H
    Biomacromolecules; 2011 Jul; 12(7):2633-41. PubMed ID: 21598942
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reducing the heterogeneity of xylan through processing.
    Zhang W; Johnson AM; Barone JR; Renneckar S
    Carbohydr Polym; 2016 Oct; 150():250-8. PubMed ID: 27312636
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Xyloglucan-cellulose nanocrystal multilayered films: effect of film architecture on enzymatic hydrolysis.
    Cerclier CV; Guyomard-Lack A; Cousin F; Jean B; Bonnin E; Cathala B; Moreau C
    Biomacromolecules; 2013 Oct; 14(10):3599-609. PubMed ID: 24015977
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Valorization of industrial xylan-rich hemicelluloses into water-soluble derivatives by in-situ acetylation in EmimAc ionic liquid.
    Zhu R; Liu X; Li L; Wang Q; Zhao Q; Liu S; Feng W; Xu F; Zhang X
    Int J Biol Macromol; 2020 Nov; 163():457-463. PubMed ID: 32634510
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Relationships between activities of xylanases and xylan structures.
    Liab K; Azadi P; Collins R; Tolan J; Kim JS; Eriksson KL
    Enzyme Microb Technol; 2000 Jul; 27(1-2):89-94. PubMed ID: 10862906
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.