BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37183173)

  • 1. A New Carvotacetone Derivative from the Aerial Part of Sphaeranthus africanus.
    Thuy Le H; Vu TY; Nguyen TV; Dinh Tri M; Pham NK; Truong Nguyen H; Nguyen NH; Nguyen HH; Duong TH
    Chem Biodivers; 2023 Jun; 20(6):e202300319. PubMed ID: 37183173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sphaeranthone A, a new carvotacetone from the leaves of
    Nguyen NH; Duong TH; Tran TM; Le HK; Thach UD; Nguyen KK; Nguyen HT
    Nat Prod Res; 2023 Mar; ():1-5. PubMed ID: 36973941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anti-inflammatory and antiproliferative compounds from Sphaeranthus africanus.
    Tran HT; Gao X; Kretschmer N; Pferschy-Wenzig EM; Raab P; Pirker T; Temml V; Schuster D; Kunert O; Huynh L; Bauer R
    Phytomedicine; 2019 Sep; 62():152951. PubMed ID: 31136898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structures and bioactivities of monomeric and dimeric carvotacetones from Sphaeranthus africanus.
    Tran HT; Pirker T; Pferschy-Wenzig EM; Kunert O; Huynh L; Bauer R
    Phytochemistry; 2024 Feb; 218():113938. PubMed ID: 38061483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antiproliferative Carvotacetones from Sphaeranthus africanus.
    Tran HT; Pferschy-Wenzig EM; Kretschmer N; Kunert O; Huynh L; Bauer R
    J Nat Prod; 2018 Aug; 81(8):1829-1834. PubMed ID: 30074787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytotoxicity of Carvotacetones from Sphaeranthus africanus Against Cancer Cells and Their Potential to Induce Apoptosis.
    Tran HT; Kretschmer N; Huynh L; Bauer R
    Planta Med; 2023 May; 89(6):624-636. PubMed ID: 36720230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioactive Constituents from the Aerial Parts of
    Ruan J; Li Z; Yan J; Huang P; Yu H; Han L; Zhang Y; Wang T
    Molecules; 2018 Aug; 23(9):. PubMed ID: 30134639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antiparasitic and anticancer carvotacetone derivatives of Sphaeranthus bullatus.
    Machumi F; Yenesew A; Midiwo JO; Heydenreich M; Kleinpeter E; Tekwani BL; Khan SI; Walker LA; Muhammad I
    Nat Prod Commun; 2012 Sep; 7(9):1123-6. PubMed ID: 23074885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New highly in vitro antioxidative 3,8″-linked Biflav(an)ones and Flavanone-C-glycosides from Garcinia buchananii stem bark.
    Stark TD; Germann D; Balemba OB; Wakamatsu J; Hofmann T
    J Agric Food Chem; 2013 Dec; 61(51):12572-81. PubMed ID: 24295222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new NMR approach for structure determination of thermally unstable biflavanones and application to phytochemicals from Garcinia buchananii.
    Stark TD; Lösch S; Salger M; Balemba OB; Wakamatsu J; Frank O; Hofmann T
    Magn Reson Chem; 2015 Oct; 53(10):813-20. PubMed ID: 26195084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. α-Glucosidase Inhibitors from
    Gutiérrez-González JA; Pérez-Vásquez A; Torres-Colín R; Rangel-Grimaldo M; Rebollar-Ramos D; Mata R
    J Nat Prod; 2021 May; 84(5):1573-1578. PubMed ID: 33857371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antioxidant, Hypoglycemic and Molecular Docking Studies of Methanolic Extract, Fractions and Isolated Compounds from Aerial Parts of
    Wang H; Zhang R; Zhang K; Chen X; Zhang Y
    Molecules; 2022 Apr; 27(9):. PubMed ID: 35566208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical constituents from the aerial parts of
    Liu M; Yang JS; Qin D
    J Asian Nat Prod Res; 2022 Jul; 24(7):685-690. PubMed ID: 34308707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel flavonoid C-glycoside from Sphaeranthus indicus L. (family Compositae).
    Mishra BB; Yadav SB; Singh RK; Tripathi V
    Molecules; 2007 Oct; 12(10):2288-91. PubMed ID: 17978758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eremophilane-type sesquiterpene derivatives from Ligularia hodgsonii.
    Li WX; Lei M; Fei DQ; Gao K
    Planta Med; 2009 May; 75(6):635-40. PubMed ID: 19199229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytochemical investigation, molecular docking studies and DFT calculations on the antidiabetic and cytotoxic activities of Gmelina philippensis CHAM.
    Sayed HM; Ahmed AS; Khallaf IS; Qayed WS; Mohammed AF; Farghaly HSM; Asem A
    J Ethnopharmacol; 2023 Mar; 303():115938. PubMed ID: 36410572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New carvotanacetone derivatives from Sphaeranthus africanus.
    Ragasa CY; Tsai PW; Galvez CT; Shen CC
    Planta Med; 2010 Feb; 76(2):146-51. PubMed ID: 19670157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Highly Potent α-Glucosidase Inhibitors from Artocarpus integer and Molecular Docking Studies.
    Duong TH; Nguyen HT; Nguyen CH; Tran NM; Danova A; Tran TM; Vu-Huynh KL; Musa V; Jutakanoke R; Nguyen NH; Sichaem J
    Chem Biodivers; 2021 Dec; 18(12):e2100499. PubMed ID: 34761862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-Guided Isolation of Alpha-Glucosidase Inhibitory Compounds from Vietnamese Lichen Roccella Montagnei.
    Thuy Le H; Vu YT; Duong GH; Le TK; Dang MK; Pham DD; Pham NK; Sichaem J; Nguyen NH; Duong TH
    Chem Biodivers; 2024 Apr; ():e202400438. PubMed ID: 38581153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological properties of Hertia cheirifolia L. flower extracts and effect of the nopol on α-glucosidase.
    Majouli K; Mahjoub MA; Rahim F; Hamdi A; Wadood A; Besbes Hlila M; Kenani A
    Int J Biol Macromol; 2017 Feb; 95():757-761. PubMed ID: 27939269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.