These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37183188)

  • 21. Classification of motor imagery EEG using deep learning increases performance in inefficient BCI users.
    Tibrewal N; Leeuwis N; Alimardani M
    PLoS One; 2022; 17(7):e0268880. PubMed ID: 35867703
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A magnetoencephalography dataset for motor and cognitive imagery-based brain-computer interface.
    Rathee D; Raza H; Roy S; Prasad G
    Sci Data; 2021 Apr; 8(1):120. PubMed ID: 33927204
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Status of deep learning for EEG-based brain-computer interface applications.
    Hossain KM; Islam MA; Hossain S; Nijholt A; Ahad MAR
    Front Comput Neurosci; 2022; 16():1006763. PubMed ID: 36726556
    [TBL] [Abstract][Full Text] [Related]  

  • 24. fMRI Brain Decoding and Its Applications in Brain-Computer Interface: A Survey.
    Du B; Cheng X; Duan Y; Ning H
    Brain Sci; 2022 Feb; 12(2):. PubMed ID: 35203991
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Local-learning-based neuron selection for grasping gesture prediction in motor brain machine interfaces.
    Xu K; Wang Y; Wang Y; Wang F; Hao Y; Zhang S; Zhang Q; Chen W; Zheng X
    J Neural Eng; 2013 Apr; 10(2):026008. PubMed ID: 23428877
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Subject-Independent Functional Near-Infrared Spectroscopy-Based Brain-Computer Interfaces Based on Convolutional Neural Networks.
    Kwon J; Im CH
    Front Hum Neurosci; 2021; 15():646915. PubMed ID: 33776674
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Decoding ECoG signal into 3D hand translation using deep learning.
    Śliwowski M; Martin M; Souloumiac A; Blanchart P; Aksenova T
    J Neural Eng; 2022 Mar; 19(2):. PubMed ID: 35287119
    [No Abstract]   [Full Text] [Related]  

  • 28. Golden subject is everyone: A subject transfer neural network for motor imagery-based brain computer interfaces.
    Sun B; Wu Z; Hu Y; Li T
    Neural Netw; 2022 Jul; 151():111-120. PubMed ID: 35405471
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Comparative Study on the Detection of Covert Attention in Event-Related EEG and MEG Signals to Control a BCI.
    Reichert C; Dürschmid S; Heinze HJ; Hinrichs H
    Front Neurosci; 2017; 11():575. PubMed ID: 29085279
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep Residual Convolutional Neural Networks for Brain-Computer Interface to Visualize Neural Processing of Hand Movements in the Human Brain.
    Fujiwara Y; Ushiba J
    Front Comput Neurosci; 2022; 16():882290. PubMed ID: 35669388
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A transfer learning-based CNN and LSTM hybrid deep learning model to classify motor imagery EEG signals.
    Khademi Z; Ebrahimi F; Kordy HM
    Comput Biol Med; 2022 Apr; 143():105288. PubMed ID: 35168083
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep Learning Based Inter-subject Continuous Decoding of Motor Imagery for Practical Brain-Computer Interfaces.
    Roy S; Chowdhury A; McCreadie K; Prasad G
    Front Neurosci; 2020; 14():918. PubMed ID: 33100953
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional MRI based simulations of ECoG grid configurations for optimal measurement of spatially distributed hand-gesture information.
    van den Boom MA; Miller KJ; Ramsey NF; Hermes D
    J Neural Eng; 2021 Feb; 18(2):. PubMed ID: 33418549
    [No Abstract]   [Full Text] [Related]  

  • 34. A Model-Agnostic Feature Attribution Approach to Magnetoencephalography Predictions Based on Shapley Value.
    Fan Y; Mao H; Li Q
    IEEE J Biomed Health Inform; 2023 May; 27(5):2524-2535. PubMed ID: 37027633
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NeuroVAD: Real-Time Voice Activity Detection from Non-Invasive Neuromagnetic Signals.
    Dash D; Ferrari P; Dutta S; Wang J
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32316162
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Decoding kinetic features of hand motor preparation from single-trial EEG using convolutional neural networks.
    Gatti R; Atum Y; Schiaffino L; Jochumsen M; Biurrun Manresa J
    Eur J Neurosci; 2021 Jan; 53(2):556-570. PubMed ID: 32781497
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Posthoc Interpretability of Neural Responses by Grouping Subject Motor Imagery Skills Using CNN-Based Connectivity.
    Collazos-Huertas DF; Álvarez-Meza AM; Cárdenas-Peña DA; Castaño-Duque GA; Castellanos-Domínguez CG
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904950
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Static Hand Gesture Recognition Using Capacitive Sensing and Machine Learning.
    Noble F; Xu M; Alam F
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050481
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hand Gesture Recognition Using EMG-IMU Signals and Deep Q-Networks.
    Vásconez JP; Barona López LI; Valdivieso Caraguay ÁL; Benalcázar ME
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36559983
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Decoding hand gestures from primary somatosensory cortex using high-density ECoG.
    Branco MP; Freudenburg ZV; Aarnoutse EJ; Bleichner MG; Vansteensel MJ; Ramsey NF
    Neuroimage; 2017 Feb; 147():130-142. PubMed ID: 27926827
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.