These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37183217)

  • 41. Crop-noncrop spillover: arable fields affect trophic interactions on wild plants in surrounding habitats.
    Gladbach DJ; Holzschuh A; Scherber C; Thies C; Dormann CF; Tscharntke T
    Oecologia; 2011 Jun; 166(2):433-41. PubMed ID: 21153737
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Frequency and spatial distribution of knock-down resistance (kdr) to pyrethroids in multiple oilseed rape pest species of the genus Ceutorhynchus.
    Daum E; Brandes M; Heimbach U; Zimmer C; Slater R; Elias J
    Pest Manag Sci; 2024 May; 80(5):2314-2324. PubMed ID: 37183587
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pea lectin expressed transgenically in oilseed rape reduces growth rate of pollen beetle larvae.
    Melander M; Ahman I; Kamnert I; Strömdahl AC
    Transgenic Res; 2003 Oct; 12(5):555-67. PubMed ID: 14601654
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Lethal and sublethal effects of orally delivered double-stranded RNA on the cabbage stem flea beetle, Psylliodes chrysocephala.
    Cedden D; Güney G; Scholten S; Rostás M
    Pest Manag Sci; 2024 May; 80(5):2282-2293. PubMed ID: 37020381
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of regional crop rotations on autumn insect pests in winter oilseed rape.
    Hausmann J; Heimbach U; Gabriel D; Brandes M
    Pest Manag Sci; 2024 May; 80(5):2371-2382. PubMed ID: 37572375
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Landscape structure and biological control in agroecosystems.
    Thies C; Tscharntke T
    Science; 1999 Aug; 285(5429):893-5. PubMed ID: 10436158
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pollen-mediated intraspecific gene flow from herbicide resistant oilseed rape (Brassica napus L.).
    Hüsken A; Dietz-Pfeilstetter A
    Transgenic Res; 2007 Oct; 16(5):557-69. PubMed ID: 17541721
    [TBL] [Abstract][Full Text] [Related]  

  • 48. De novo transcriptome assemblies of five major European oilseed rape insect pests.
    Sana S; Vollhardt I; Kubon K; Rostás M; Scholten S
    BMC Genom Data; 2023 Mar; 24(1):15. PubMed ID: 36899327
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantifying the impact of Psylliodes chrysocephala injury on the productivity of oilseed rape.
    Coston DJ; Clark SJ; Breeze TD; Field LM; Potts SG; Cook SM
    Pest Manag Sci; 2024 May; 80(5):2383-2392. PubMed ID: 37899495
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Management of herbicide-tolerant oilseed rape in Europe: a case study on minimizing vertical gene flow.
    Devos Y; Reheul D; de Schrijver A; Cors F; Moens W
    Environ Biosafety Res; 2004; 3(3):135-48. PubMed ID: 15901096
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Economic Injury Levels for Flea Beetles (Phyllotreta spp.; Coleoptera: Chrysomelidae) in Spring Oilseed Rape (Brassica napus; Brassicales: Brassicaceae).
    Lundin O
    J Econ Entomol; 2020 Apr; 113(2):808-813. PubMed ID: 31879773
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Entomopathogenic nematodes for biological control of Psylliodes chrysocephala (Coleoptera: Chrysomelidae) in oilseed rape.
    Godina G; Vandenbossche B; Schmidt M; Sender A; Tambe AH; Touceda-González M; Ehlers RU
    J Invertebr Pathol; 2023 Mar; 197():107894. PubMed ID: 36754114
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Use of insect pest thresholds in oilseed rape and cereals: is it worth it?
    Thiel L; Mergenthaler M; Wutke M; Haberlah-Korr V
    Pest Manag Sci; 2024 May; 80(5):2353-2361. PubMed ID: 37402269
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A survey of pyrethroid-resistant populations of Meligethes aeneus F. in Poland indicates the incidence of numerous substitutions in the pyrethroid target site of voltage-sensitive sodium channels in individual beetles.
    Wrzesińska B; Czerwoniec A; Wieczorek P; Węgorek P; Zamojska J; Obrępalska-Stęplowska A
    Insect Mol Biol; 2014 Oct; 23(5):682-93. PubMed ID: 24974912
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Species-specific primers for predation studies of the pollen beetle, Meligethes aeneus (Coleoptera, Nitidulidae).
    Cassel-Lundhagen A; Oberg S; Högfeldt C; Ekbom B
    Mol Ecol Resour; 2009 Jul; 9(4):1132-4. PubMed ID: 21564852
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modelling the impact of cabbage stem flea beetle larval feeding on oilseed rape lodging risk.
    Wilkinson TD; Coston DJ; Berry PM; Pickering F; White S; Kendall SL
    Pest Manag Sci; 2024 Aug; 80(8):3763-3775. PubMed ID: 38477428
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Manipulating feeding stimulation to protect crops against insect pests?
    Hervé MR; Delourme R; Gravot A; Marnet N; Berardocco S; Cortesero AM
    J Chem Ecol; 2014 Dec; 40(11-12):1220-31. PubMed ID: 25355636
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mass-flowering crops enhance wild bee abundance.
    Holzschuh A; Dormann CF; Tscharntke T; Steffan-Dewenter I
    Oecologia; 2013 Jun; 172(2):477-84. PubMed ID: 23114428
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Assessing the potential of biopesticides to control the cabbage stem flea beetle Psylliodes chrysocephala.
    Price CSV; Campbell H; Pope TW
    Pest Manag Sci; 2024 May; 80(5):2471-2479. PubMed ID: 37622417
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Contrasting Patterns of Colonization with
    Zheng X; Pfordt A; Khatri L; Eseola AB; Wilch A; Koopmann B; von Tiedemann A
    Plant Dis; 2019 Aug; 103(8):2090-2099. PubMed ID: 31210597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.