These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 37183449)

  • 1. scAnno: a deconvolution strategy-based automatic cell type annotation tool for single-cell RNA-sequencing data sets.
    Liu H; Li H; Sharma A; Huang W; Pan D; Gu Y; Lin L; Sun X; Liu H
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37183449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of Cell Type Annotation R Packages on Single-cell RNA-seq Data.
    Huang Q; Liu Y; Du Y; Garmire LX
    Genomics Proteomics Bioinformatics; 2021 Apr; 19(2):267-281. PubMed ID: 33359678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TripletCell: a deep metric learning framework for accurate annotation of cell types at the single-cell level.
    Liu Y; Wei G; Li C; Shen LC; Gasser RB; Song J; Chen D; Yu DJ
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37080771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. deCS: A Tool for Systematic Cell Type Annotations of Single-cell RNA Sequencing Data among Human Tissues.
    Pei G; Yan F; Simon LM; Dai Y; Jia P; Zhao Z
    Genomics Proteomics Bioinformatics; 2023 Apr; 21(2):370-384. PubMed ID: 35470070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of single-cell classifiers for single-cell RNA sequencing data sets.
    Zhao X; Wu S; Fang N; Sun X; Fan J
    Brief Bioinform; 2020 Sep; 21(5):1581-1595. PubMed ID: 31675098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A component overlapping attribute clustering (COAC) algorithm for single-cell RNA sequencing data analysis and potential pathobiological implications.
    Peng H; Zeng X; Zhou Y; Zhang D; Nussinov R; Cheng F
    PLoS Comput Biol; 2019 Feb; 15(2):e1006772. PubMed ID: 30779739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continually adapting pre-trained language model to universal annotation of single-cell RNA-seq data.
    Wan H; Yuan M; Fu Y; Deng M
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38388681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic Cell Type Annotation Using Marker Genes for Single-Cell RNA Sequencing Data.
    Chen Y; Zhang S
    Biomolecules; 2022 Oct; 12(10):. PubMed ID: 36291748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. XgCPred: Cell type classification using XGBoost-CNN integration and exploiting gene expression imaging in single-cell RNAseq data.
    Abu-Doleh A; Al Fahoum A
    Comput Biol Med; 2024 Oct; 181():109066. PubMed ID: 39180857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-cell Mayo Map (scMayoMap): an easy-to-use tool for cell type annotation in single-cell RNA-sequencing data analysis.
    Yang L; Ng YE; Sun H; Li Y; Chini LCS; LeBrasseur NK; Chen J; Zhang X
    BMC Biol; 2023 Oct; 21(1):223. PubMed ID: 37858214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. scGAD: a new task and end-to-end framework for generalized cell type annotation and discovery.
    Zhai Y; Chen L; Deng M
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36869836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ASAP: a web-based platform for the analysis and interactive visualization of single-cell RNA-seq data.
    Gardeux V; David FPA; Shajkofci A; Schwalie PC; Deplancke B
    Bioinformatics; 2017 Oct; 33(19):3123-3125. PubMed ID: 28541377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. jSRC: a flexible and accurate joint learning algorithm for clustering of single-cell RNA-sequencing data.
    Wu W; Liu Z; Ma X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33535230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. scQCEA: a framework for annotation and quality control report of single-cell RNA-sequencing data.
    Nassiri I; Fairfax B; Lee A; Wu Y; Buck D; Piazza P
    BMC Genomics; 2023 Jul; 24(1):381. PubMed ID: 37415108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Omnibus and robust deconvolution scheme for bulk RNA sequencing data integrating multiple single-cell reference sets and prior biological knowledge.
    Chen C; Leung YY; Ionita M; Wang LS; Li M
    Bioinformatics; 2022 Sep; 38(19):4530-4536. PubMed ID: 35980155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GE-Impute: graph embedding-based imputation for single-cell RNA-seq data.
    Wu X; Zhou Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35901457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SCMcluster: a high-precision cell clustering algorithm integrating marker gene set with single-cell RNA sequencing data.
    Wu H; Zhou H; Zhou B; Wang M
    Brief Funct Genomics; 2023 Jul; 22(4):329-340. PubMed ID: 36848584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. scAnnoX: an R package integrating multiple public tools for single-cell annotation.
    Huang X; Liu R; Yang S; Chen X; Li H
    PeerJ; 2024; 12():e17184. PubMed ID: 38560451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.