These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 37183673)

  • 1. Recent advances in type I organic photosensitizers for efficient photodynamic therapy for overcoming tumor hypoxia.
    Lu B; Wang L; Tang H; Cao D
    J Mater Chem B; 2023 May; 11(21):4600-4618. PubMed ID: 37183673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances in Hypoxia-Overcoming Strategy of Aggregation-Induced Emission Photosensitizers for Efficient Photodynamic Therapy.
    Chen H; Wan Y; Cui X; Li S; Lee CS
    Adv Healthc Mater; 2021 Dec; 10(24):e2101607. PubMed ID: 34674386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amplifying Free Radical Generation of AIE Photosensitizer with Small Singlet-Triplet Splitting for Hypoxia-Overcoming Photodynamic Therapy.
    Xiao YF; Chen WC; Chen JX; Lu G; Tian S; Cui X; Zhang Z; Chen H; Wan Y; Li S; Lee CS
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5112-5121. PubMed ID: 35048696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in aggregation-induced emission-active type I photosensitizers with near-infrared fluorescence: From materials design to therapeutic platform fabrication.
    Xie Y; Li Z; Zhao C; Lv R; Li Y; Zhang Z; Teng M; Wan Q
    Luminescence; 2024 Jan; 39(1):e4621. PubMed ID: 38044321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent molecular design strategies for efficient photodynamic therapy and its synergistic therapy based on AIE photosensitizers.
    Liu J; Chen W; Zheng C; Hu F; Zhai J; Bai Q; Sun N; Qian G; Zhang Y; Dong K; Lu T
    Eur J Med Chem; 2022 Dec; 244():114843. PubMed ID: 36265281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregation-Induced Emission Photosensitizer-Engineered Anticancer Nanomedicine for Synergistic Chemo/Chemodynamic/Photodynamic Therapy.
    Yu B; Liu M; Jiang L; Xu C; Hu H; Huang T; Xu D; Wang N; Li Q; Tang BZ; Huang X; Zhang W
    Adv Healthc Mater; 2024 Apr; 13(11):e2303643. PubMed ID: 38115727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selenium-Containing Type-I Organic Photosensitizers with Dual Reactive Oxygen Species of Superoxide and Hydroxyl Radicals as Switch-Hitter for Photodynamic Therapy.
    Wang H; Qin T; Wang W; Zhou X; Lin F; Liang G; Yang Z; Chi Z; Tang BZ
    Adv Sci (Weinh); 2023 Aug; 10(24):e2301902. PubMed ID: 37357144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constructing Heavy-Atom-Free Photosensitizers for Hypoxic Tumor Phototherapy Based on Donor-Excited Photoinduced Electron-Transfer-Driven Type-I and Type-II Mechanisms.
    Miao J; Yao G; Huo Y; Wang B; Zhao W; Guo W
    ACS Appl Mater Interfaces; 2024 Aug; 16(31):40428-40443. PubMed ID: 39042585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and structural regulation of AIE photosensitizers for imaging-guided photodynamic anti-tumor application.
    Jia S; Yuan H; Hu R
    Biomater Sci; 2022 Aug; 10(16):4443-4457. PubMed ID: 35789348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Innovative Strategies for Hypoxic-Tumor Photodynamic Therapy.
    Li X; Kwon N; Guo T; Liu Z; Yoon J
    Angew Chem Int Ed Engl; 2018 Sep; 57(36):11522-11531. PubMed ID: 29808948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cationization to boost both type I and type II ROS generation for photodynamic therapy.
    Yu Y; Wu S; Zhang L; Xu S; Dai C; Gan S; Xie G; Feng G; Tang BZ
    Biomaterials; 2022 Jan; 280():121255. PubMed ID: 34810034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progress and trends of photodynamic therapy: From traditional photosensitizers to AIE-based photosensitizers.
    Wang S; Wang X; Yu L; Sun M
    Photodiagnosis Photodyn Ther; 2021 Jun; 34():102254. PubMed ID: 33713845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Programmable therapeutic nanoscale covalent organic framework for photodynamic therapy and hypoxia-activated cascade chemotherapy.
    He H; Du L; Xue H; Wu J; Shuai X
    Acta Biomater; 2022 Sep; 149():297-306. PubMed ID: 35811069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combination of PEG-b-PAA Carrier and Efficient Cationic Photosensitizers for Photodynamic Therapy.
    Yang H; Shang Z; Shi Q; Gao J; Wang X; Hu F
    Chem Asian J; 2023 May; 18(10):e202300212. PubMed ID: 37029595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Type I Photosensitizers Based on Aggregation-Induced Emission: A Rising Star in Photodynamic Therapy.
    Li D; Liu P; Tan Y; Zhang Z; Kang M; Wang D; Tang BZ
    Biosensors (Basel); 2022 Sep; 12(9):. PubMed ID: 36140107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A type I and type II chemical biology toolbox to overcome the hypoxic tumour microenvironment for photodynamic therapy.
    Ju M; Yang L; Wang G; Zong F; Shen Y; Wu S; Tang X; Yu D
    Biomater Sci; 2024 May; 12(11):2831-2840. PubMed ID: 38683541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nano-photosensitizers for enhanced photodynamic therapy.
    Lin L; Song X; Dong X; Li B
    Photodiagnosis Photodyn Ther; 2021 Dec; 36():102597. PubMed ID: 34699982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ferroptosis Promotes Photodynamic Therapy: Supramolecular Photosensitizer-Inducer Nanodrug for Enhanced Cancer Treatment.
    Zhu T; Shi L; Yu C; Dong Y; Qiu F; Shen L; Qian Q; Zhou G; Zhu X
    Theranostics; 2019; 9(11):3293-3307. PubMed ID: 31244955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conquering the Hypoxia Limitation for Photodynamic Therapy.
    Wan Y; Fu LH; Li C; Lin J; Huang P
    Adv Mater; 2021 Dec; 33(48):e2103978. PubMed ID: 34580926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photosensitizers for Photodynamic Therapy.
    Lan M; Zhao S; Liu W; Lee CS; Zhang W; Wang P
    Adv Healthc Mater; 2019 Jul; 8(13):e1900132. PubMed ID: 31067008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.