These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 37183765)
1. Comparisons of statistical methods for handling attrition in a follow-up visit with complex survey sampling. Cai J; Zeng D; Li H; Butera NM; Baldoni PL; Maitra P; Dong L Stat Med; 2023 May; 42(11):1641-1668. PubMed ID: 37183765 [TBL] [Abstract][Full Text] [Related]
2. On the use of multiple imputation to address data missing by design as well as unintended missing data in case-cohort studies with a binary endpoint. Middleton M; Nguyen C; Carlin JB; Moreno-Betancur M; Lee KJ BMC Med Res Methodol; 2023 Dec; 23(1):287. PubMed ID: 38062377 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of predictive model performance of an existing model in the presence of missing data. Li P; Taylor JMG; Spratt DE; Karnes RJ; Schipper MJ Stat Med; 2021 Jul; 40(15):3477-3498. PubMed ID: 33843085 [TBL] [Abstract][Full Text] [Related]
4. Attrition Bias Related to Missing Outcome Data: A Longitudinal Simulation Study. Lewin A; Brondeel R; Benmarhnia T; Thomas F; Chaix B Epidemiology; 2018 Jan; 29(1):87-95. PubMed ID: 28926372 [TBL] [Abstract][Full Text] [Related]
5. Responsiveness-informed multiple imputation and inverse probability-weighting in cohort studies with missing data that are non-monotone or not missing at random. Doidge JC Stat Methods Med Res; 2018 Feb; 27(2):352-363. PubMed ID: 26984909 [TBL] [Abstract][Full Text] [Related]
6. Comparison between inverse-probability weighting and multiple imputation in Cox model with missing failure subtype. Guo F; Langworthy B; Ogino S; Wang M Stat Methods Med Res; 2024 Feb; 33(2):344-356. PubMed ID: 38262434 [TBL] [Abstract][Full Text] [Related]
7. Modeling longitudinal change in biomarkers using data from a complex survey sampling design: An application to the Hispanic Community Health Study/Study of Latinos. Butera NM; Zeng D; Heiss G; Cai J Stat Med; 2023 Feb; 42(5):632-655. PubMed ID: 36631123 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of multiple imputation approaches for handling missing covariate information in a case-cohort study with a binary outcome. Middleton M; Nguyen C; Moreno-Betancur M; Carlin JB; Lee KJ BMC Med Res Methodol; 2022 Apr; 22(1):87. PubMed ID: 35369860 [TBL] [Abstract][Full Text] [Related]
9. Analytical results in longitudinal studies depended on target of inference and assumed mechanism of attrition. Jones M; Mishra GD; Dobson A J Clin Epidemiol; 2015 Oct; 68(10):1165-75. PubMed ID: 25920943 [TBL] [Abstract][Full Text] [Related]
10. Combining multiple imputation and inverse-probability weighting. Seaman SR; White IR; Copas AJ; Li L Biometrics; 2012 Mar; 68(1):129-37. PubMed ID: 22050039 [TBL] [Abstract][Full Text] [Related]
11. Multiple imputation methods for handling missing values in longitudinal studies with sampling weights: Comparison of methods implemented in Stata. De Silva AP; De Livera AM; Lee KJ; Moreno-Betancur M; Simpson JA Biom J; 2021 Feb; 63(2):354-371. PubMed ID: 33103307 [TBL] [Abstract][Full Text] [Related]
12. Missing Data in Marginal Structural Models: A Plasmode Simulation Study Comparing Multiple Imputation and Inverse Probability Weighting. Liu SH; Chrysanthopoulou SA; Chang Q; Hunnicutt JN; Lapane KL Med Care; 2019 Mar; 57(3):237-243. PubMed ID: 30664611 [TBL] [Abstract][Full Text] [Related]
13. Comparison of statistical approaches for analyzing incomplete longitudinal patient-reported outcome data in randomized controlled trials. Rombach I; Jenkinson C; Gray AM; Murray DW; Rivero-Arias O Patient Relat Outcome Meas; 2018; 9():197-209. PubMed ID: 29950913 [TBL] [Abstract][Full Text] [Related]
14. A comparison of multiple imputation methods for handling missing values in longitudinal data in the presence of a time-varying covariate with a non-linear association with time: a simulation study. De Silva AP; Moreno-Betancur M; De Livera AM; Lee KJ; Simpson JA BMC Med Res Methodol; 2017 Jul; 17(1):114. PubMed ID: 28743256 [TBL] [Abstract][Full Text] [Related]
15. A Two-Step Approach for Analysis of Nonignorable Missing Outcomes in Longitudinal Regression: an Application to Upstate KIDS Study. Liu D; Yeung EH; McLain AC; Xie Y; Buck Louis GM; Sundaram R Paediatr Perinat Epidemiol; 2017 Sep; 31(5):468-478. PubMed ID: 28767145 [TBL] [Abstract][Full Text] [Related]
16. Data Missing Not at Random in Mobile Health Research: Assessment of the Problem and a Case for Sensitivity Analyses. Goldberg SB; Bolt DM; Davidson RJ J Med Internet Res; 2021 Jun; 23(6):e26749. PubMed ID: 34128810 [TBL] [Abstract][Full Text] [Related]
17. Methods for handling longitudinal outcome processes truncated by dropout and death. Wen L; Terrera GM; Seaman SR Biostatistics; 2018 Oct; 19(4):407-425. PubMed ID: 29028922 [TBL] [Abstract][Full Text] [Related]
18. Handling missing data when estimating causal effects with targeted maximum likelihood estimation. Dashti SG; Lee KJ; Simpson JA; White IR; Carlin JB; Moreno-Betancur M Am J Epidemiol; 2024 Jul; 193(7):1019-1030. PubMed ID: 38400653 [TBL] [Abstract][Full Text] [Related]
19. Instability of inverse probability weighting methods and a remedy for nonignorable missing data. Li P; Qin J; Liu Y Biometrics; 2023 Dec; 79(4):3215-3226. PubMed ID: 37221141 [TBL] [Abstract][Full Text] [Related]
20. A comparison of different methods to handle missing data in the context of propensity score analysis. Choi J; Dekkers OM; le Cessie S Eur J Epidemiol; 2019 Jan; 34(1):23-36. PubMed ID: 30341708 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]