These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 37183801)

  • 1. Inelastic Light Scattering in the Vicinity of a Single-Atom Quantum Point Contact in a Plasmonic Picocavity.
    Liu S; Bonafe FP; Appel H; Rubio A; Wolf M; Kumagai T
    ACS Nano; 2023 Jun; 17(11):10172-10180. PubMed ID: 37183801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dramatic Enhancement of Tip-Enhanced Raman Scattering Mediated by Atomic Point Contact Formation.
    Liu S; Cirera B; Sun Y; Hamada I; Müller M; Hammud A; Wolf M; Kumagai T
    Nano Lett; 2020 Aug; 20(8):5879-5884. PubMed ID: 32678605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Locating Single-Atom Optical Picocavities Using Wavelength-Multiplexed Raman Scattering.
    Griffiths J; de Nijs B; Chikkaraddy R; Baumberg JJ
    ACS Photonics; 2021 Oct; 8(10):2868-2875. PubMed ID: 34692898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic-Scale Structural Fluctuations of a Plasmonic Cavity.
    Rosławska A; Merino P; Grewal A; Leon CC; Kuhnke K; Kern K
    Nano Lett; 2021 Sep; 21(17):7221-7227. PubMed ID: 34428071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charge Transfer-Mediated Dramatic Enhancement of Raman Scattering upon Molecular Point Contact Formation.
    Cirera B; Litman Y; Lin C; Akkoush A; Hammud A; Wolf M; Rossi M; Kumagai T
    Nano Lett; 2022 Mar; 22(6):2170-2176. PubMed ID: 35188400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic Point Contact Raman Spectroscopy of a Si(111)-7 × 7 Surface.
    Liu S; Hammud A; Wolf M; Kumagai T
    Nano Lett; 2021 May; 21(9):4057-4061. PubMed ID: 33934600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-molecule optomechanics in "picocavities".
    Benz F; Schmidt MK; Dreismann A; Chikkaraddy R; Zhang Y; Demetriadou A; Carnegie C; Ohadi H; de Nijs B; Esteban R; Aizpurua J; Baumberg JJ
    Science; 2016 Nov; 354(6313):726-729. PubMed ID: 27846600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling Optically Driven Atomic Migration Using Crystal-Facet Control in Plasmonic Nanocavities.
    Xomalis A; Chikkaraddy R; Oksenberg E; Shlesinger I; Huang J; Garnett EC; Koenderink AF; Baumberg JJ
    ACS Nano; 2020 Aug; 14(8):10562-10568. PubMed ID: 32687323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface- and Tip-Enhanced Raman Scattering by CdSe Nanocrystals on Plasmonic Substrates.
    Milekhin IA; Milekhin AG; Zahn DRT
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35808032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joule Heating in Single-Molecule Point Contacts Studied by Tip-Enhanced Raman Spectroscopy.
    Cirera B; Wolf M; Kumagai T
    ACS Nano; 2022 Oct; 16(10):16443-16451. PubMed ID: 36197071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-molecule tip-enhanced Raman spectroscopy of C
    Cirera B; Liu S; Park Y; Hamada I; Wolf M; Shiotari A; Kumagai T
    Phys Chem Chem Phys; 2024 Aug; 26(32):21325-21331. PubMed ID: 39082139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrashort Pulse Excited Tip-Enhanced Raman Spectroscopy in Molecules.
    Luo Y; Martin-Jimenez A; Gutzler R; Garg M; Kern K
    Nano Lett; 2022 Jul; 22(13):5100-5106. PubMed ID: 35704454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Optomechanics Approach to Surface-Enhanced Raman Scattering.
    Esteban R; Baumberg JJ; Aizpurua J
    Acc Chem Res; 2022 Jul; 55(14):1889-1899. PubMed ID: 35776555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering.
    Zhu W; Crozier KB
    Nat Commun; 2014 Oct; 5():5228. PubMed ID: 25311008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resolving the Correlation between Tip-Enhanced Resonance Raman Scattering and Local Electronic States with 1 nm Resolution.
    Liu S; Müller M; Sun Y; Hamada I; Hammud A; Wolf M; Kumagai T
    Nano Lett; 2019 Aug; 19(8):5725-5731. PubMed ID: 31361964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Molecule Imaging Using Atomistic Near-Field Tip-Enhanced Raman Spectroscopy.
    Liu P; Chulhai DV; Jensen L
    ACS Nano; 2017 May; 11(5):5094-5102. PubMed ID: 28463555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum plasmonic control of trions in a picocavity with monolayer WS
    He Z; Han Z; Yuan J; Sinyukov AM; Eleuch H; Niu C; Zhang Z; Lou J; Hu J; Voronine DV; Scully MO
    Sci Adv; 2019 Oct; 5(10):eaau8763. PubMed ID: 31646171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Full Quantum Mechanical Approach Assessing the Chemical and Electromagnetic Effect in TERS.
    Fiederling K; Abasifard M; Richter M; Deckert V; Kupfer S; Gräfe S
    ACS Nano; 2023 Jul; 17(14):13137-13146. PubMed ID: 37429582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonant tip-enhanced Raman scattering by CdSe nanocrystals on plasmonic substrates.
    Milekhin IA; Rahaman M; Anikin KV; Rodyakina EE; Duda TA; Saidzhonov BM; Vasiliev RB; Dzhagan VM; Milekhin AG; Latyshev AV; Zahn DRT
    Nanoscale Adv; 2020 Nov; 2(11):5441-5449. PubMed ID: 36132045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.