These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Atomic-Scale Lightning Rod Effect in Plasmonic Picocavities: A Classical View to a Quantum Effect. Urbieta M; Barbry M; Zhang Y; Koval P; Sánchez-Portal D; Zabala N; Aizpurua J ACS Nano; 2018 Jan; 12(1):585-595. PubMed ID: 29298379 [TBL] [Abstract][Full Text] [Related]
23. Single-molecule and single-particle-based correlation studies between localized surface plasmons of dimeric nanostructures with ~1 nm gap and surface-enhanced Raman scattering. Lee H; Lee JH; Jin SM; Suh YD; Nam JM Nano Lett; 2013; 13(12):6113-21. PubMed ID: 24256433 [TBL] [Abstract][Full Text] [Related]
24. Revisiting the inelastic electron tunneling spectroscopy of single hydrogen atom adsorbed on the Cu(100) surface. Jiang Z; Wang H; Sanvito S; Hou S J Chem Phys; 2015 Dec; 143(23):234709. PubMed ID: 26696072 [TBL] [Abstract][Full Text] [Related]
26. Theoretical and computational methods for tip- and surface-enhanced Raman scattering. Duan S; Tian G; Luo Y Chem Soc Rev; 2024 May; 53(10):5083-5117. PubMed ID: 38596836 [TBL] [Abstract][Full Text] [Related]
27. Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: a critical review. Schmid T; Opilik L; Blum C; Zenobi R Angew Chem Int Ed Engl; 2013 Jun; 52(23):5940-54. PubMed ID: 23610002 [TBL] [Abstract][Full Text] [Related]
28. A cryogen-free low temperature scanning tunneling microscope capable of inelastic electron tunneling spectroscopy. Zhang S; Huang D; Wu S Rev Sci Instrum; 2016 Jun; 87(6):063701. PubMed ID: 27370453 [TBL] [Abstract][Full Text] [Related]
29. Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes. Lee JH; You MH; Kim GH; Nam JM Nano Lett; 2014 Nov; 14(11):6217-25. PubMed ID: 25275930 [TBL] [Abstract][Full Text] [Related]
30. Full spectroscopic tip-enhanced Raman imaging of single nanotapes formed from β-amyloid(1-40) peptide fragments. Paulite M; Blum C; Schmid T; Opilik L; Eyer K; Walker GC; Zenobi R ACS Nano; 2013 Feb; 7(2):911-20. PubMed ID: 23311496 [TBL] [Abstract][Full Text] [Related]
31. The chemical effect goes resonant - a full quantum mechanical approach on TERS. Fiederling K; Abasifard M; Richter M; Deckert V; Gräfe S; Kupfer S Nanoscale; 2020 Mar; 12(11):6346-6359. PubMed ID: 32134418 [TBL] [Abstract][Full Text] [Related]
33. Are charged tips driving TERS-resolution? A full quantum chemical approach. Fiederling K; Kupfer S; Gräfe S J Chem Phys; 2021 Jan; 154(3):034106. PubMed ID: 33499639 [TBL] [Abstract][Full Text] [Related]
34. Disordered ensembles of strongly coupled single-molecule plasmonic picocavities as nonlinear optical metamaterials. Herrera F; Litinskaya M J Chem Phys; 2022 Mar; 156(11):114702. PubMed ID: 35317564 [TBL] [Abstract][Full Text] [Related]
35. Optical antennas with multiple plasmonic nanoparticles for tip-enhanced Raman microscopy. Taguchi A; Yu J; Verma P; Kawata S Nanoscale; 2015 Nov; 7(41):17424-33. PubMed ID: 26439510 [TBL] [Abstract][Full Text] [Related]
36. Nonlinear inelastic electron scattering from Au nanostructures induced by localized surface plasmon resonance. Li Z; Xu C; Liu W; Li M; Chen X Sci Rep; 2018 Apr; 8(1):5626. PubMed ID: 29618753 [TBL] [Abstract][Full Text] [Related]
37. Nanooptics of Plasmonic Nanomatryoshkas: Shrinking the Size of a Core-Shell Junction to Subnanometer. Lin L; Zapata M; Xiong M; Liu Z; Wang S; Xu H; Borisov AG; Gu H; Nordlander P; Aizpurua J; Ye J Nano Lett; 2015 Oct; 15(10):6419-28. PubMed ID: 26375710 [TBL] [Abstract][Full Text] [Related]
38. Plasmonic Metamaterials for Nanochemistry and Sensing. Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511 [TBL] [Abstract][Full Text] [Related]