These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37184012)

  • 1. Further cautionary tales on thermostatting in molecular dynamics: Energy equipartitioning and non-equilibrium processes in gas-phase simulations.
    Halonen R; Neefjes I; Reischl B
    J Chem Phys; 2023 May; 158(19):. PubMed ID: 37184012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of thermostatting on nonequilibrium molecular dynamics simulations of heat conduction in solids.
    Li Z; Xiong S; Sievers C; Hu Y; Fan Z; Wei N; Bao H; Chen S; Donadio D; Ala-Nissila T
    J Chem Phys; 2019 Dec; 151(23):234105. PubMed ID: 31864248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Temperature Control Algorithms on Transport Properties and Kinetics in Molecular Dynamics Simulations.
    Basconi JE; Shirts MR
    J Chem Theory Comput; 2013 Jul; 9(7):2887-99. PubMed ID: 26583973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient stochastic thermostatting of path integral molecular dynamics.
    Ceriotti M; Parrinello M; Markland TE; Manolopoulos DE
    J Chem Phys; 2010 Sep; 133(12):124104. PubMed ID: 20886921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementations of Nosé-Hoover and Nosé-Poincaré thermostats in mesoscopic dynamic simulations with the united-residue model of a polypeptide chain.
    Kleinerman DS; Czaplewski C; Liwo A; Scheraga HA
    J Chem Phys; 2008 Jun; 128(24):245103. PubMed ID: 18601387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proper Thermal Equilibration of Simulations with Drude Polarizable Models: Temperature-Grouped Dual-Nosé-Hoover Thermostat.
    Son CY; McDaniel JG; Cui Q; Yethiraj A
    J Phys Chem Lett; 2019 Dec; 10(23):7523-7530. PubMed ID: 31722528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermostats and thermostat strategies for molecular dynamics simulations of nanofluidics.
    Yong X; Zhang LT
    J Chem Phys; 2013 Feb; 138(8):084503. PubMed ID: 23464156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the influence of thermostat configurations on the mechanical properties of carbon nanotubes in molecular dynamics simulations.
    Heo S; Sinnott SB
    J Nanosci Nanotechnol; 2007; 7(4-5):1518-24. PubMed ID: 17450920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water flow in carbon nanotubes: The effect of tube flexibility and thermostat.
    Sam A; Kannam SK; Hartkamp R; Sathian SP
    J Chem Phys; 2017 Jun; 146(23):234701. PubMed ID: 28641430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Molecular Dynamics Thermostats on Descriptions of Chemical Nonequilibrium.
    Page AJ; Isomoto T; Knaup JM; Irle S; Morokuma K
    J Chem Theory Comput; 2012 Nov; 8(11):4019-28. PubMed ID: 26605569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast-forward Langevin dynamics with momentum flips.
    Hijazi M; Wilkins DM; Ceriotti M
    J Chem Phys; 2018 May; 148(18):184109. PubMed ID: 29764135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature control in molecular dynamic simulations of non-equilibrium processes.
    Toton D; Lorenz CD; Rompotis N; Martsinovich N; Kantorovich L
    J Phys Condens Matter; 2010 Feb; 22(7):074205. PubMed ID: 21386383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anomalous Effects of Velocity Rescaling Algorithms: The Flying Ice Cube Effect Revisited.
    Braun E; Moosavi SM; Smit B
    J Chem Theory Comput; 2018 Oct; 14(10):5262-5272. PubMed ID: 30075070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Work and Thermal Fluctuations in Crystal Indentation under Deterministic and Stochastic Thermostats: The Role of System-Bath Coupling.
    Varillas J; Rondoni L
    Entropy (Basel); 2022 Sep; 24(9):. PubMed ID: 36141195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An ergodic configurational thermostat using selective control of higher order temperatures.
    Patra PK; Bhattacharya B
    J Chem Phys; 2015 May; 142(19):194103. PubMed ID: 26001443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Galilean-invariant Nosé-Hoover-type thermostats.
    Pieprzyk S; Heyes DM; Maćkowiak S; Brańka AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033312. PubMed ID: 25871251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Addressing Dynamics at Catalytic Heterogeneous Interfaces with DFT-MD: Anomalous Temperature Distributions from Commonly Used Thermostats.
    Korpelin V; Kiljunen T; Melander MM; Caro MA; Kristoffersen HH; Mammen N; Apaja V; Honkala K
    J Phys Chem Lett; 2022 Mar; 13(11):2644-2652. PubMed ID: 35297635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Local Galilean Invariant Thermostat.
    Groot RD
    J Chem Theory Comput; 2006 May; 2(3):568-74. PubMed ID: 26626664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast Nosé-Hoover thermostat: molecular dynamics in quasi-thermodynamic equilibrium.
    Sidler D; Riniker S
    Phys Chem Chem Phys; 2019 Mar; 21(11):6059-6070. PubMed ID: 30810120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A configurational temperature Nosé-Hoover thermostat.
    Braga C; Travis KP
    J Chem Phys; 2005 Oct; 123(13):134101. PubMed ID: 16223269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.