These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37184014)

  • 1. Effect of pressure on the carbon dioxide hydrate-water interfacial free energy along its dissociation line.
    Romero-Guzmán C; Zerón IM; Algaba J; Mendiboure B; Míguez JM; Blas FJ
    J Chem Phys; 2023 May; 158(19):. PubMed ID: 37184014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of the CO
    Zerón IM; Míguez JM; Mendiboure B; Algaba J; Blas FJ
    J Chem Phys; 2022 Oct; 157(13):134709. PubMed ID: 36209019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of the THF hydrate-water interfacial free energy from computer simulation.
    Torrejón MJ; Romero-Guzmán C; Piñeiro MM; Blas FJ; Algaba J
    J Chem Phys; 2024 Aug; 161(6):. PubMed ID: 39115168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of the carbon dioxide hydrate-water interfacial energy.
    Algaba J; Acuña E; Míguez JM; Mendiboure B; Zerón IM; Blas FJ
    J Colloid Interface Sci; 2022 Oct; 623():354-367. PubMed ID: 35594594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissociation line and driving force for nucleation of the nitrogen hydrate from computer simulation. II. Effect of multiple occupancy.
    Torrejón MJ; Algaba J; Blas FJ
    J Chem Phys; 2024 Aug; 161(5):. PubMed ID: 39092957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solubility of carbon dioxide in water: Some useful results for hydrate nucleation.
    Algaba J; Zerón IM; Míguez JM; Grabowska J; Blazquez S; Sanz E; Vega C; Blas FJ
    J Chem Phys; 2023 May; 158(18):. PubMed ID: 37158326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociation line and driving force for nucleation of the nitrogen hydrate from computer simulation.
    Algaba J; Torrejón MJ; Blas FJ
    J Chem Phys; 2023 Dec; 159(22):. PubMed ID: 38088432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clusters of classical water models.
    Kiss PT; Baranyai A
    J Chem Phys; 2009 Nov; 131(20):204310. PubMed ID: 19947683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic properties and phase transtions in the H2O/CO2/CH4 system.
    Svandal A; Kuznetsova T; Kvamme B
    Phys Chem Chem Phys; 2006 Apr; 8(14):1707-13. PubMed ID: 16633655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulation of CO2 hydrates: Prediction of three phase coexistence line.
    Míguez JM; Conde MM; Torré JP; Blas FJ; Piñeiro MM; Vega C
    J Chem Phys; 2015 Mar; 142(12):124505. PubMed ID: 25833594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental verification of methane-carbon dioxide replacement in natural gas hydrates using a differential scanning calorimeter.
    Lee S; Lee Y; Lee J; Lee H; Seo Y
    Environ Sci Technol; 2013 Nov; 47(22):13184-90. PubMed ID: 24175633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid-Liquid Interfacial Free Energy of Water:  A Molecular Dynamics Simulation Study.
    Wang J; Tang YW; Zeng XC
    J Chem Theory Comput; 2007 Jul; 3(4):1494-8. PubMed ID: 26633220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Monte Carlo simulation study of methane clathrate hydrates confined in slit-shaped pores.
    Chakraborty SN; Gelb LD
    J Phys Chem B; 2012 Feb; 116(7):2183-97. PubMed ID: 22320214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimum in the pressure dependence of the interfacial free energy between ice Ih and water.
    Montero de Hijes P; R Espinosa J; Vega C; Dellago C
    J Chem Phys; 2023 Mar; 158(12):124503. PubMed ID: 37003785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-phase equilibria of hydrates from computer simulation. II. Finite-size effects in the carbon dioxide hydrate.
    Algaba J; Blazquez S; Feria E; Míguez JM; Conde MM; Blas FJ
    J Chem Phys; 2024 Apr; 160(16):. PubMed ID: 38687000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of the ice-water interface using the TIP4P/2005 water model.
    Benet J; MacDowell LG; Sanz E
    Phys Chem Chem Phys; 2014 Oct; 16(40):22159-66. PubMed ID: 25213106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The crystal-fluid interfacial free energy and nucleation rate of NaCl from different simulation methods.
    Espinosa JR; Vega C; Valeriani C; Sanz E
    J Chem Phys; 2015 May; 142(19):194709. PubMed ID: 26001475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics of liquid-liquid equilibrium and interfacial properties of aqueous solutions of methyl esters.
    Feria E; Algaba J; Míguez JM; Mejía A; Blas FJ
    Phys Chem Chem Phys; 2022 Mar; 24(9):5371-5382. PubMed ID: 35170596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of united-atom potentials for the simulation of vapor-liquid equilibria and interfacial properties of long-chain n-alkanes up to n-C100.
    Müller EA; Mejía A
    J Phys Chem B; 2011 Nov; 115(44):12822-34. PubMed ID: 21932822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase Diagram of Methane and Carbon Dioxide Hydrates Computed by Monte Carlo Simulations.
    Waage MH; Vlugt TJH; Kjelstrup S
    J Phys Chem B; 2017 Aug; 121(30):7336-7350. PubMed ID: 28682631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.