BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 37184017)

  • 1. Machine learning interatomic potential for silicon-nitride (Si3N4) by active learning.
    Milardovich D; Wilhelmer C; Waldhoer D; Cvitkovich L; Sivaraman G; Grasser T
    J Chem Phys; 2023 May; 158(19):. PubMed ID: 37184017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gaussian approximation potentials for accurate thermal properties of two-dimensional materials.
    Kocabaş T; Keçeli M; Vázquez-Mayagoitia Á; Sevik C
    Nanoscale; 2023 May; 15(19):8772-8780. PubMed ID: 37098822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning interatomic potential developed for molecular simulations on thermal properties of β-Ga
    Liu YB; Yang JY; Xin GM; Liu LH; Csányi G; Cao BY
    J Chem Phys; 2020 Oct; 153(14):144501. PubMed ID: 33086840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Realistic Atomistic Structure of Amorphous Silicon from Machine-Learning-Driven Molecular Dynamics.
    Deringer VL; Bernstein N; Bartók AP; Cliffe MJ; Kerber RN; Marbella LE; Grey CP; Elliott SR; Csányi G
    J Phys Chem Lett; 2018 Jun; 9(11):2879-2885. PubMed ID: 29754489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Accuracy Neural Network Interatomic Potential for Silicon Nitride.
    Xu H; Li Z; Zhang Z; Liu S; Shen S; Guo Y
    Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37110937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-the-Fly Active Learning of Interatomic Potentials for Large-Scale Atomistic Simulations.
    Jinnouchi R; Miwa K; Karsai F; Kresse G; Asahi R
    J Phys Chem Lett; 2020 Sep; 11(17):6946-6955. PubMed ID: 32787192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiscale machine-learning interatomic potentials for ferromagnetic and liquid iron.
    Byggmästar J; Nikoulis G; Fellman A; Granberg F; Djurabekova F; Nordlund K
    J Phys Condens Matter; 2022 May; 34(30):. PubMed ID: 35550572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the Phase-Change Memory Material, Ge
    Mocanu FC; Konstantinou K; Lee TH; Bernstein N; Deringer VL; Csányi G; Elliott SR
    J Phys Chem B; 2018 Sep; 122(38):8998-9006. PubMed ID: 30173522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining phonon accuracy with high transferability in Gaussian approximation potential models.
    George J; Hautier G; Bartók AP; Csányi G; Deringer VL
    J Chem Phys; 2020 Jul; 153(4):044104. PubMed ID: 32752705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments.
    Zaverkin V; Holzmüller D; Steinwart I; Kästner J
    J Chem Theory Comput; 2021 Oct; 17(10):6658-6670. PubMed ID: 34585927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine Learning Interatomic Potentials as Emerging Tools for Materials Science.
    Deringer VL; Caro MA; Csányi G
    Adv Mater; 2019 Nov; 31(46):e1902765. PubMed ID: 31486179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data-Driven Learning of Total and Local Energies in Elemental Boron.
    Deringer VL; Pickard CJ; Csányi G
    Phys Rev Lett; 2018 Apr; 120(15):156001. PubMed ID: 29756876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From Molecular Fragments to the Bulk: Development of a Neural Network Potential for MOF-5.
    Eckhoff M; Behler J
    J Chem Theory Comput; 2019 Jun; 15(6):3793-3809. PubMed ID: 31091097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constructing and Evaluating Machine-Learned Interatomic Potentials for Li-Based Disordered Rocksalts.
    Choyal V; Sagar N; Sai Gautam G
    J Chem Theory Comput; 2024 Jun; 20(11):4844-4856. PubMed ID: 38787289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved interatomic potentials for silicon-fluorine and silicon-chlorine.
    Humbird D; Graves DB
    J Chem Phys; 2004 Feb; 120(5):2405-12. PubMed ID: 15268380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An accurate and transferable machine learning potential for carbon.
    Rowe P; Deringer VL; Gasparotto P; Csányi G; Michaelides A
    J Chem Phys; 2020 Jul; 153(3):034702. PubMed ID: 32716159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of interatomic potential for Al-Tb alloys using a deep neural network learning method.
    Tang L; Yang ZJ; Wen TQ; Ho KM; Kramer MJ; Wang CZ
    Phys Chem Chem Phys; 2020 Sep; 22(33):18467-18479. PubMed ID: 32778859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beam induced heating in electron microscopy modeled with machine learning interatomic potentials.
    Nuñez Valencia C; Lomholdt WB; Leth Larsen MH; Hansen TW; Schiøtz J
    Nanoscale; 2024 Mar; 16(11):5750-5759. PubMed ID: 38411198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An accurate interatomic potential for the TiAlNb ternary alloy developed by deep neural network learning method.
    Lu J; Wang J; Wan K; Chen Y; Wang H; Shi X
    J Chem Phys; 2023 May; 158(20):. PubMed ID: 37212410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.