These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 37184017)

  • 21. Machine-Learned Potentials by Active Learning from Organic Crystal Structure Prediction Landscapes.
    Butler PWV; Hafizi R; Day GM
    J Phys Chem A; 2024 Feb; 128(5):945-957. PubMed ID: 38277275
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improve the performance of machine-learning potentials by optimizing descriptors.
    Gao H; Wang J; Sun J
    J Chem Phys; 2019 Jun; 150(24):244110. PubMed ID: 31255049
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experiment-Driven Atomistic Materials Modeling: A Case Study Combining X-Ray Photoelectron Spectroscopy and Machine Learning Potentials to Infer the Structure of Oxygen-Rich Amorphous Carbon.
    Zarrouk T; Ibragimova R; Bartók AP; Caro MA
    J Am Chem Soc; 2024 May; 146(21):14645-14659. PubMed ID: 38749497
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Graph-EAM: An Interpretable and Efficient Graph Neural Network Potential Framework.
    Yang J; Chen Z; Sun H; Samanta A
    J Chem Theory Comput; 2023 Sep; 19(17):5910-5923. PubMed ID: 37581304
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Atomistic modeling of the mechanical properties: the rise of machine learning interatomic potentials.
    Mortazavi B; Zhuang X; Rabczuk T; Shapeev AV
    Mater Horiz; 2023 Jun; 10(6):1956-1968. PubMed ID: 37014053
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparison of molecular dynamics potentials used to account for thermal diffuse scattering in multislice simulations.
    Chen X; Kim DS; LeBeau JM
    Ultramicroscopy; 2023 Feb; 244():113644. PubMed ID: 36410085
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dependence of a cooling rate on structural and vibrational properties of amorphous silicon: A neural network potential-based molecular dynamics study.
    Li W; Ando Y
    J Chem Phys; 2019 Sep; 151(11):114101. PubMed ID: 31542013
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automated discovery of a robust interatomic potential for aluminum.
    Smith JS; Nebgen B; Mathew N; Chen J; Lubbers N; Burakovsky L; Tretiak S; Nam HA; Germann T; Fensin S; Barros K
    Nat Commun; 2021 Feb; 12(1):1257. PubMed ID: 33623036
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accurate prediction of grain boundary structures and energetics in CdTe: a machine-learning potential approach.
    Yokoi T; Adachi K; Iwase S; Matsunaga K
    Phys Chem Chem Phys; 2022 Jan; 24(3):1620-1629. PubMed ID: 34951419
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accelerating explicit solvent models of heterogeneous catalysts with machine learning interatomic potentials.
    Chen BWJ; Zhang X; Zhang J
    Chem Sci; 2023 Aug; 14(31):8338-8354. PubMed ID: 37564405
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Machine Learning of First-Principles Force-Fields for Alkane and Polyene Hydrocarbons.
    Hajibabaei A; Ha M; Pourasad S; Kim J; Kim KS
    J Phys Chem A; 2021 Oct; 125(42):9414-9420. PubMed ID: 34657427
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A general-purpose machine learning Pt interatomic potential for an accurate description of bulk, surfaces, and nanoparticles.
    Kloppenburg J; Pártay LB; Jónsson H; Caro MA
    J Chem Phys; 2023 Apr; 158(13):134704. PubMed ID: 37031153
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a machine learning interatomic potential for exploring pressure-dependent kinetics of phase transitions in germanium.
    Fantasia A; Rovaris F; Abou El Kheir O; Marzegalli A; Lanzoni D; Pessina L; Xiao P; Zhou C; Li L; Henkelman G; Scalise E; Montalenti F
    J Chem Phys; 2024 Jul; 161(1):. PubMed ID: 38953439
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ænet-PyTorch: A GPU-supported implementation for machine learning atomic potentials training.
    López-Zorrilla J; Aretxabaleta XM; Yeu IW; Etxebarria I; Manzano H; Artrith N
    J Chem Phys; 2023 Apr; 158(16):. PubMed ID: 37096855
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Performance and Cost Assessment of Machine Learning Interatomic Potentials.
    Zuo Y; Chen C; Li X; Deng Z; Chen Y; Behler J; Csányi G; Shapeev AV; Thompson AP; Wood MA; Ong SP
    J Phys Chem A; 2020 Jan; 124(4):731-745. PubMed ID: 31916773
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Machine-learning interatomic potential for W-Mo alloys.
    Nikoulis G; Byggmästar J; Kioseoglou J; Nordlund K; Djurabekova F
    J Phys Condens Matter; 2021 Jun; 33(31):. PubMed ID: 34020426
    [TBL] [Abstract][Full Text] [Related]  

  • 37. From Jekyll to Hyde and Beyond: Hydrogen's Multifaceted Role in Passivation, H-Induced Breakdown, and Charging of Amorphous Silicon Nitride.
    Cottom J; Hückmann L; Olsson E; Meyer J
    J Phys Chem Lett; 2024 Jan; 15(3):840-848. PubMed ID: 38235960
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transfer learning for chemically accurate interatomic neural network potentials.
    Zaverkin V; Holzmüller D; Bonfirraro L; Kästner J
    Phys Chem Chem Phys; 2023 Feb; 25(7):5383-5396. PubMed ID: 36748821
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization and validation of a deep learning CuZr atomistic potential: Robust applications for crystalline and amorphous phases with near-DFT accuracy.
    Andolina CM; Williamson P; Saidi WA
    J Chem Phys; 2020 Apr; 152(15):154701. PubMed ID: 32321274
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accelerating atomistic simulations with piecewise machine-learned
    Zhang Y; Hu C; Jiang B
    Phys Chem Chem Phys; 2021 Jan; 23(3):1815-1821. PubMed ID: 33236743
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.