These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37184155)

  • 21. An activatable chemiluminescence probe based on phenoxy-dioxetane scaffold for biothiol imaging in living systems.
    Fu A; Mao Y; Wang H; Cao Z
    J Pharm Biomed Anal; 2021 Sep; 204():114266. PubMed ID: 34284266
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solvent cage effects: basis of a general mechanism for efficient chemiluminescence.
    Bastos EL; da Silva SM; Baader WJ
    J Org Chem; 2013 May; 78(9):4432-9. PubMed ID: 23551289
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Near-infrared light photocatalysis enabled by a ruthenium complex-integrated metal-organic framework via two-photon absorption.
    Tang JH; Han G; Li G; Yan K; Sun Y
    iScience; 2022 Apr; 25(4):104064. PubMed ID: 35355522
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis of 5-tert-butyl-1-(3-tert-butyldimethylsiloxy)phenyl-4,4-dimethyl-2,6,7-trioxabicyclo[3.2.0]heptanes and their fluoride-induced chemiluminescent decomposition: effect of a phenolic electron donor on the CIEEL decay rate in aprotic polar solvent.
    Matsumoto M; Ito Y; Murakami M; Watanabe N
    Luminescence; 2002; 17(5):305-12. PubMed ID: 12407669
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bicyclic dioxetanes bearing an inden-2-yl or a benzo(b)thiazol-2-yl moiety as a CIEEL-active chemiluminescent substrate emitting red light.
    Watanabe N; Nagamatsu K; Mizuno T; Matsumoto M
    Luminescence; 2005; 20(2):63-72. PubMed ID: 15803504
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photoactivatable Red Chemiluminescent AIEgen Probe for
    Li J; Hu Y; Li Z; Liu W; Deng T; Li J
    Anal Chem; 2021 Aug; 93(30):10601-10610. PubMed ID: 34296856
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two-photon-absorbing ruthenium complexes enable near infrared light-driven photocatalysis.
    Han G; Li G; Huang J; Han C; Turro C; Sun Y
    Nat Commun; 2022 Apr; 13(1):2288. PubMed ID: 35484148
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Seeking Illumination: The Path to Chemiluminescent 1,2-Dioxetanes for Quantitative Measurements and
    Haris U; Kagalwala HN; Kim YL; Lippert AR
    Acc Chem Res; 2021 Jul; 54(13):2844-2857. PubMed ID: 34110136
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Colour change of chemiluminescence for base-induced decomposition of dioxetane bearing a 4-(4-cyanophenyl)iminomethyl-3-hydroxyphenyl group.
    Watanabe N; Suga N; Matsumoto M
    Luminescence; 2008; 23(5):344-9. PubMed ID: 18509844
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Highly Efficient Chemiluminescence Probe for the Detection of Singlet Oxygen in Living Cells.
    Hananya N; Green O; Blau R; Satchi-Fainaro R; Shabat D
    Angew Chem Int Ed Engl; 2017 Sep; 56(39):11793-11796. PubMed ID: 28749072
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photo-Induced Ruthenium-Catalyzed C-H Benzylations and Allylations at Room Temperature.
    Struwe J; Korvorapun K; Zangarelli A; Ackermann L
    Chemistry; 2021 Nov; 27(65):16237-16241. PubMed ID: 34435716
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cavity-Modified Chemiluminescent Reaction of Dioxetane.
    Gudem M; Kowalewski M
    J Phys Chem A; 2023 Nov; 127(45):9483-9494. PubMed ID: 37845803
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxygen-Sensing Chemiluminescent Iridium(III) 1,2-Dioxetanes: Unusual Coordination and Activity.
    Kagalwala HN; Bueno L; Wanniarachchi H; Unruh DK; Hamal KB; Pavlich CI; Carlson GJ; Pinney KG; Mason RP; Lippert AR
    Anal Sens; 2023 Jan; 3(1):. PubMed ID: 37006671
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ortho-Chlorination of phenoxy 1,2-dioxetane yields superior chemiluminescent probes for in vitro and in vivo imaging.
    Eilon-Shaffer T; Roth-Konforti M; Eldar-Boock A; Satchi-Fainaro R; Shabat D
    Org Biomol Chem; 2018 Mar; 16(10):1708-1712. PubMed ID: 29451576
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis of sulfanyl-, sulfinyl-, and sulfonyl-substituted bicyclic dioxetanes and their base-induced chemiluminescence.
    Watanabe N; Kikuchi M; Maniwa Y; Ijuin HK; Matsumoto M
    J Org Chem; 2010 Feb; 75(3):879-84. PubMed ID: 20073481
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemiluminescent immunodetection protocols with 1,2-dioxetane substrates. 4.
    Olesen CE; Mosier J; Voyta JC; Bronstein I
    Methods Enzymol; 2000; 305():417-27. PubMed ID: 10812617
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enzyme-Activated, Chemiluminescent Siderophore-Dioxetane Probes Enable the Selective and Highly Sensitive Detection of Bacterial Pathogens.
    Peukert C; Popat Gholap S; Green O; Pinkert L; van den Heuvel J; van Ham M; Shabat D; Brönstrup M
    Angew Chem Int Ed Engl; 2022 Jun; 61(25):e202201423. PubMed ID: 35358362
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Turn On of a Ruthenium(II) Photocatalyst by DNA-Templated Ligation.
    Anzola M; Winssinger N
    Chemistry; 2019 Jan; 25(1):334-342. PubMed ID: 30451338
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modular Access to Diverse Chemiluminescent Dioxetane-Luminophores through Convergent Synthesis.
    Gnaim S; Gholap SP; Ge L; Das S; Gutkin S; Green O; Shelef O; Hananya N; Baran PS; Shabat D
    Angew Chem Int Ed Engl; 2022 May; 61(22):e202202187. PubMed ID: 35258138
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.