These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 37184397)
1. Stereoinversion via Alcohol Dehydrogenases Enables Complete Catabolism of β-1-Type Lignin-Derived Aromatic Isomers. Kato R; Maekawa K; Kobayashi S; Hishiyama S; Katahira R; Nambo M; Higuchi Y; Kuatsjah E; Beckham GT; Kamimura N; Masai E Appl Environ Microbiol; 2023 Jun; 89(6):e0017123. PubMed ID: 37184397 [No Abstract] [Full Text] [Related]
2. Biochemical and structural characterization of a sphingomonad diarylpropane lyase for cofactorless deformylation. Kuatsjah E; Zahn M; Chen X; Kato R; Hinchen DJ; Konev MO; Katahira R; Orr C; Wagner A; Zou Y; Haugen SJ; Ramirez KJ; Michener JK; Pickford AR; Kamimura N; Masai E; Houk KN; McGeehan JE; Beckham GT Proc Natl Acad Sci U S A; 2023 Jan; 120(4):e2212246120. PubMed ID: 36652470 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the catabolic pathway for a phenylcoumaran-type lignin-derived biaryl in Sphingobium sp. strain SYK-6. Takahashi K; Kamimura N; Hishiyama S; Hara H; Kasai D; Katayama Y; Fukuda M; Kajita S; Masai E Biodegradation; 2014 Sep; 25(5):735-45. PubMed ID: 24916011 [TBL] [Abstract][Full Text] [Related]
4. Roles of two glutathione S-transferases in the final step of the β-aryl ether cleavage pathway in Sphingobium sp. strain SYK-6. Higuchi Y; Sato D; Kamimura N; Masai E Sci Rep; 2020 Nov; 10(1):20614. PubMed ID: 33244017 [TBL] [Abstract][Full Text] [Related]
5. Bacterial Catabolism of β-Hydroxypropiovanillone and β-Hydroxypropiosyringone Produced in the Reductive Cleavage of Arylglycerol-β-Aryl Ether in Lignin. Higuchi Y; Aoki S; Takenami H; Kamimura N; Takahashi K; Hishiyama S; Lancefield CS; Ojo OS; Katayama Y; Westwood NJ; Masai E Appl Environ Microbiol; 2018 Apr; 84(7):. PubMed ID: 29374031 [No Abstract] [Full Text] [Related]
6. Identification of three alcohol dehydrogenase genes involved in the stereospecific catabolism of arylglycerol-beta-aryl ether by Sphingobium sp. strain SYK-6. Sato Y; Moriuchi H; Hishiyama S; Otsuka Y; Oshima K; Kasai D; Nakamura M; Ohara S; Katayama Y; Fukuda M; Masai E Appl Environ Microbiol; 2009 Aug; 75(16):5195-201. PubMed ID: 19542348 [TBL] [Abstract][Full Text] [Related]
7. Catabolic System of 5-Formylferulic Acid, a Downstream Metabolite of a β-5-Type Lignin-Derived Dimer, in Kawazoe M; Takahashi K; Tokue Y; Hishiyama S; Seki H; Higuchi Y; Kamimura N; Masai E J Agric Food Chem; 2023 Dec; 71(49):19663-19671. PubMed ID: 38038961 [No Abstract] [Full Text] [Related]
8. Pathway discovery and engineering for cleavage of a β-1 lignin-derived biaryl compound. Presley GN; Werner AZ; Katahira R; Garcia DC; Haugen SJ; Ramirez KJ; Giannone RJ; Beckham GT; Michener JK Metab Eng; 2021 May; 65():1-10. PubMed ID: 33636323 [TBL] [Abstract][Full Text] [Related]
9. Discovery of novel enzyme genes involved in the conversion of an arylglycerol-β-aryl ether metabolite and their use in generating a metabolic pathway for lignin valorization. Higuchi Y; Kato R; Tsubota K; Kamimura N; Westwood NJ; Masai E Metab Eng; 2019 Sep; 55():258-267. PubMed ID: 31390538 [TBL] [Abstract][Full Text] [Related]
10. Introduction of chemically labile substructures into Arabidopsis lignin through the use of LigD, the Cα-dehydrogenase from Sphingobium sp. strain SYK-6. Tsuji Y; Vanholme R; Tobimatsu Y; Ishikawa Y; Foster CE; Kamimura N; Hishiyama S; Hashimoto S; Shino A; Hara H; Sato-Izawa K; Oyarce P; Goeminne G; Morreel K; Kikuchi J; Takano T; Fukuda M; Katayama Y; Boerjan W; Ralph J; Masai E; Kajita S Plant Biotechnol J; 2015 Aug; 13(6):821-32. PubMed ID: 25580543 [TBL] [Abstract][Full Text] [Related]
14. The Syringate Araki T; Tanatani K; Kamimura N; Otsuka Y; Yamaguchi M; Nakamura M; Masai E Appl Environ Microbiol; 2020 Oct; 86(22):. PubMed ID: 32917754 [TBL] [Abstract][Full Text] [Related]
15. Structural and Biochemical Characterization of the Early and Late Enzymes in the Lignin β-Aryl Ether Cleavage Pathway from Sphingobium sp. SYK-6. Pereira JH; Heins RA; Gall DL; McAndrew RP; Deng K; Holland KC; Donohue TJ; Noguera DR; Simmons BA; Sale KL; Ralph J; Adams PD J Biol Chem; 2016 May; 291(19):10228-38. PubMed ID: 26940872 [TBL] [Abstract][Full Text] [Related]
16. DdvK, a Novel Major Facilitator Superfamily Transporter Essential for 5,5'-Dehydrodivanillate Uptake by Sphingobium sp. Strain SYK-6. Mori K; Niinuma K; Fujita M; Kamimura N; Masai E Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30120118 [TBL] [Abstract][Full Text] [Related]
17. Computationally Prospecting Potential Pathways from Lignin Monomers and Dimers toward Aromatic Compounds. Wang L; Maranas CD ACS Synth Biol; 2021 May; 10(5):1064-1076. PubMed ID: 33877818 [TBL] [Abstract][Full Text] [Related]
18. A group of sequence-related sphingomonad enzymes catalyzes cleavage of β-aryl ether linkages in lignin β-guaiacyl and β-syringyl ether dimers. Gall DL; Ralph J; Donohue TJ; Noguera DR Environ Sci Technol; 2014 Oct; 48(20):12454-63. PubMed ID: 25232892 [TBL] [Abstract][Full Text] [Related]
19. Structural insights into a maleylpyruvate hydrolase from sphingobium sp. SYK-6, a bacterium degrading lignin-derived aryls. Hong H; Seo H; Kim KJ Biochem Biophys Res Commun; 2019 Jun; 514(3):765-771. PubMed ID: 31079929 [TBL] [Abstract][Full Text] [Related]
20. The catabolism of lignin-derived Wolf ME; Lalande AT; Newman BL; Bleem AC; Palumbo CT; Beckham GT; Eltis LD Appl Environ Microbiol; 2024 Mar; 90(3):e0215523. PubMed ID: 38380926 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]