BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37184689)

  • 1. Origins of brain tissue elasticity under multiple loading modes by analyzing the microstructure-based models.
    Wang P; Du Z; Shi H; Liu J; Liu Z; Zhuang Z
    Biomech Model Mechanobiol; 2023 Aug; 22(4):1239-1252. PubMed ID: 37184689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A micromechanical hyperelastic modeling of brain white matter under large deformation.
    Karami G; Grundman N; Abolfathi N; Naik A; Ziejewski M
    J Mech Behav Biomed Mater; 2009 Jul; 2(3):243-54. PubMed ID: 19627829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical characterization of human brain tissue.
    Budday S; Sommer G; Birkl C; Langkammer C; Haybaeck J; Kohnert J; Bauer M; Paulsen F; Steinmann P; Kuhl E; Holzapfel GA
    Acta Biomater; 2017 Jan; 48():319-340. PubMed ID: 27989920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A micromechanical procedure for viscoelastic characterization of the axons and ECM of the brainstem.
    Javid S; Rezaei A; Karami G
    J Mech Behav Biomed Mater; 2014 Feb; 30():290-9. PubMed ID: 24361933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homogenization of heterogeneous brain tissue under quasi-static loading: a visco-hyperelastic model of a 3D RVE.
    Kazempour M; Baniassadi M; Shahsavari H; Remond Y; Baghani M
    Biomech Model Mechanobiol; 2019 Aug; 18(4):969-981. PubMed ID: 30762151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micromechanics of brain white matter tissue: A fiber-reinforced hyperelastic model using embedded element technique.
    Yousefsani SA; Shamloo A; Farahmand F
    J Mech Behav Biomed Mater; 2018 Apr; 80():194-202. PubMed ID: 29428702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlating the microstructural architecture and macrostructural behaviour of the brain.
    Hoppstädter M; Püllmann D; Seydewitz R; Kuhl E; Böl M
    Acta Biomater; 2022 Oct; 151():379-395. PubMed ID: 36002124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bidirectional hyperelastic characterization of brain white matter tissue.
    Yousefsani SA; Karimi MZV
    Biomech Model Mechanobiol; 2023 Apr; 22(2):495-513. PubMed ID: 36550243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring spatial variations of microstructural properties from macroscopic mechanical response.
    Liu T; Hall TJ; Barbone PE; Oberai AA
    Biomech Model Mechanobiol; 2017 Apr; 16(2):479-496. PubMed ID: 27655420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards microstructure-informed material models for human brain tissue.
    Budday S; Sarem M; Starck L; Sommer G; Pfefferle J; Phunchago N; Kuhl E; Paulsen F; Steinmann P; Shastri VP; Holzapfel GA
    Acta Biomater; 2020 Mar; 104():53-65. PubMed ID: 31887455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient two-scale 3D FE model of the bone fibril array: comparison of anisotropic elastic properties with analytical methods and micro-sample testing.
    Alizadeh E; Dehestani M; Zysset P
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2127-2147. PubMed ID: 32333217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tissue-level anisotropic criterion for brain injury based on microstructural axonal deformation.
    Cloots RJ; van Dommelen JA; Geers MG
    J Mech Behav Biomed Mater; 2012 Jan; 5(1):41-52. PubMed ID: 22100078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rate dependent anisotropic constitutive modeling of brain tissue undergoing large deformation.
    Haldar K; Pal C
    J Mech Behav Biomed Mater; 2018 May; 81():178-194. PubMed ID: 29529589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of fiber orientation and strain rate on the nonlinear uniaxial tensile material properties of tendon.
    Lynch HA; Johannessen W; Wu JP; Jawa A; Elliott DM
    J Biomech Eng; 2003 Oct; 125(5):726-31. PubMed ID: 14618932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harmonic viscoelastic response of 3D histology-informed white matter model.
    Wu X; Georgiadis JG; Pelegri AA
    Mol Cell Neurosci; 2022 Dec; 123():103782. PubMed ID: 36154874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical elastic tensile behavior of muscle fiber bundles in traumatic loading events.
    Tamura A; Hongu JI; Matsumoto T
    Clin Biomech (Bristol, Avon); 2019 Oct; 69():184-190. PubMed ID: 31376809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A homogenization model of the annulus fibrosus.
    Yin L; Elliott DM
    J Biomech; 2005 Aug; 38(8):1674-84. PubMed ID: 15958225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morpho-mechanical mapping of human dura mater microstructure.
    Niestrawska JA; Rodewald M; Schultz C; Quansah E; Meyer-Zedler T; Schmitt M; Popp J; Tomasec I; Ondruschka B; Hammer N
    Acta Biomater; 2023 Oct; 170():86-96. PubMed ID: 37598794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperelastic anisotropic microplane constitutive model for annulus fibrosus.
    Caner FC; Guo Z; Moran B; Bazant ZP; Carol I
    J Biomech Eng; 2007 Oct; 129(5):632-41. PubMed ID: 17887888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microstructural model for the elastic response of articular cartilage.
    Schwartz MH; Leo PH; Lewis JL
    J Biomech; 1994 Jul; 27(7):865-73. PubMed ID: 8063837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.