These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37184745)

  • 1. Quantification of Cerebral Vascular Autoregulation Immediately Following Resuscitation from Cardiac Arrest.
    Shen Y; Wang Q; Modi HR; Pathak AP; Geocadin RG; Thakor NV; Senarathna J
    Ann Biomed Eng; 2023 Aug; 51(8):1847-1858. PubMed ID: 37184745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissociation of Cerebral Blood Flow and Femoral Artery Blood Pressure Pulsatility After Cardiac Arrest and Resuscitation in a Rodent Model: Implications for Neurological Recovery.
    Crouzet C; Wilson RH; Lee D; Bazrafkan A; Tromberg BJ; Akbari Y; Choi B
    J Am Heart Assoc; 2020 Jan; 9(1):e012691. PubMed ID: 31902319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporating a parenchymal thermal diffusion cerebral blood flow probe in bedside assessment of cerebral autoregulation and vasoreactivity in patients with severe traumatic brain injury.
    Rosenthal G; Sanchez-Mejia RO; Phan N; Hemphill JC; Martin C; Manley GT
    J Neurosurg; 2011 Jan; 114(1):62-70. PubMed ID: 20707619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebral blood flow and metabolism in severe brain injury: the role of pressure autoregulation during cerebral perfusion pressure management.
    Mascia L; Andrews PJ; McKeating EG; Souter MJ; Merrick MV; Piper IR
    Intensive Care Med; 2000 Feb; 26(2):202-5. PubMed ID: 10784309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pressure autoregulation monitoring and cerebral perfusion pressure target recommendation in patients with severe traumatic brain injury based on minute-by-minute monitoring data.
    Depreitere B; Güiza F; Van den Berghe G; Schuhmann MU; Maier G; Piper I; Meyfroidt G
    J Neurosurg; 2014 Jun; 120(6):1451-7. PubMed ID: 24745709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time monitoring of cerebral blood flow by laser speckle contrast imaging after cardiac arrest in rat.
    Junyun He ; Hongyang Lu ; Ruoxian Deng ; Young L; Shanbao Tong ; Xiaofeng Jia
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6971-4. PubMed ID: 26737896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebral Blood Flow-Guided Manipulation of Arterial Blood Pressure Attenuates Hippocampal Apoptosis After Asphyxia-Induced Cardiac Arrest in Rats.
    Wang CH; Chang WT; Huang CH; Tsai MS; Liu SH; Chen WJ
    J Am Heart Assoc; 2020 Jul; 9(13):e016513. PubMed ID: 32552439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autoregulation of cerebral blood flow in patients resuscitated from cardiac arrest.
    Sundgreen C; Larsen FS; Herzog TM; Knudsen GM; Boesgaard S; Aldershvile J
    Stroke; 2001 Jan; 32(1):128-32. PubMed ID: 11136927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Individualized perfusion targets in hypoxic ischemic brain injury after cardiac arrest.
    Sekhon MS; Griesdale DE
    Crit Care; 2017 Oct; 21(1):259. PubMed ID: 29061152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The critical closing pressure contribution to dynamic cerebral autoregulation in humans: influence of arterial partial pressure of CO
    Panerai RB; Minhas JS; Llwyd O; Salinet ASM; Katsogridakis E; Maggio P; Robinson TG
    J Physiol; 2020 Dec; 598(24):5673-5685. PubMed ID: 32975820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebral autoregulation is impaired in patients resuscitated after cardiac arrest.
    Nishizawa H; Kudoh I
    Acta Anaesthesiol Scand; 1996 Oct; 40(9):1149-53. PubMed ID: 8933858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time quantitative monitoring of cerebral blood flow by laser speckle contrast imaging after cardiac arrest with targeted temperature management.
    He J; Lu H; Young L; Deng R; Callow D; Tong S; Jia X
    J Cereb Blood Flow Metab; 2019 Jun; 39(6):1161-1171. PubMed ID: 29283290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison study of cerebral autoregulation assessed with transcranial Doppler and cortical laser Doppler flowmetry.
    Zweifel C; Czosnyka M; Lavinio A; Castellani G; Kim DJ; Carrera E; Pickard JD; Kirkpatrick PJ; Smielewski P
    Neurol Res; 2010 May; 32(4):425-8. PubMed ID: 19703359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What are we measuring? A refined look at the process of disrupted autoregulation and the limitations of cerebral perfusion pressure in preventing secondary injury after traumatic brain injury.
    Small C; Lucke-Wold B; Patel C; Abou-Al-Shaar H; Moor R; Mehkri Y; Still M; Goldman M; Miller P; Robicsek S
    Clin Neurol Neurosurg; 2022 Oct; 221():107389. PubMed ID: 35961231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebral blood flow and cerebrovascular autoregulation in a swine model of pediatric cardiac arrest and hypothermia.
    Lee JK; Brady KM; Mytar JO; Kibler KK; Carter EL; Hirsch KG; Hogue CW; Easley RB; Jordan LC; Smielewski P; Czosnyka M; Shaffner DH; Koehler RC
    Crit Care Med; 2011 Oct; 39(10):2337-45. PubMed ID: 21705904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Electrical Vagus Nerve Stimulation on Cerebral Blood Flow and Neurological Outcome in Asphyxial Cardiac Arrest Model of Rats.
    Kim B; Park I; Lee JH; Kim S; Lee MJ; Jo YH
    Neurocrit Care; 2019 Jun; 30(3):572-580. PubMed ID: 30382532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noninvasive optical measurement of microvascular cerebral hemodynamics and autoregulation in the neonatal ECMO patient.
    Busch DR; Baker WB; Mavroudis CD; Ko TS; Lynch JM; McCarthy AL; DuPont-Thibodeau G; Buckley EM; Jacobwitz M; Boorady TW; Mensah-Brown K; Connelly JT; Yodh AG; Kilbaugh TJ; Licht DJ
    Pediatr Res; 2020 Dec; 88(6):925-933. PubMed ID: 32172282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Therapeutic hypothermia promotes cerebral blood flow recovery and brain homeostasis after resuscitation from cardiac arrest in a rat model.
    Wang Q; Miao P; Modi HR; Garikapati S; Koehler RC; Thakor NV
    J Cereb Blood Flow Metab; 2019 Oct; 39(10):1961-1973. PubMed ID: 29739265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebral perfusion and metabolism with mean arterial pressure 90 vs. 60 mmHg in a porcine post cardiac arrest model with and without targeted temperature management.
    Skåre C; Karlsen H; Strand-Amundsen RJ; Eriksen M; Skulberg VM; Sunde K; Tønnessen TI; Olasveengen TM
    Resuscitation; 2021 Oct; 167():251-260. PubMed ID: 34166747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Cerebrovascular and Intracranial Pressure Reactivity Assessment of Impaired Cerebrovascular Autoregulation in Intracranial Hypertension.
    Bragin DE; Statom G; Nemoto EM
    Acta Neurochir Suppl; 2016; 122():255-60. PubMed ID: 27165917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.