These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 37184999)
1. Differentiating Benign From Malignant Cystic Renal Masses: A Feasibility Study of Computed Tomography Texture-Based Machine Learning Algorithms. Miskin N; Qin L; Silverman SG; Shinagare AB J Comput Assist Tomogr; 2023 May-Jun 01; 47(3):376-381. PubMed ID: 37184999 [TBL] [Abstract][Full Text] [Related]
2. Stratification of cystic renal masses into benign and potentially malignant: applying machine learning to the bosniak classification. Miskin N; Qin L; Matalon SA; Tirumani SH; Alessandrino F; Silverman SG; Shinagare AB Abdom Radiol (NY); 2021 Jan; 46(1):311-318. PubMed ID: 32613401 [TBL] [Abstract][Full Text] [Related]
3. Deep learning and radiomics: the utility of Google TensorFlow™ Inception in classifying clear cell renal cell carcinoma and oncocytoma on multiphasic CT. Coy H; Hsieh K; Wu W; Nagarajan MB; Young JR; Douek ML; Brown MS; Scalzo F; Raman SS Abdom Radiol (NY); 2019 Jun; 44(6):2009-2020. PubMed ID: 30778739 [TBL] [Abstract][Full Text] [Related]
4. Differentiation of benign from malignant solid renal lesions using CT-based radiomics and machine learning: comparison with radiologist interpretation. Wentland AL; Yamashita R; Kino A; Pandit P; Shen L; Brooke Jeffrey R; Rubin D; Kamaya A Abdom Radiol (NY); 2023 Feb; 48(2):642-648. PubMed ID: 36370180 [TBL] [Abstract][Full Text] [Related]
5. Prediction of Benign and Malignant Solid Renal Masses: Machine Learning-Based CT Texture Analysis. Erdim C; Yardimci AH; Bektas CT; Kocak B; Koca SB; Demir H; Kilickesmez O Acad Radiol; 2020 Oct; 27(10):1422-1429. PubMed ID: 32014404 [TBL] [Abstract][Full Text] [Related]
6. Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification. Lee HS; Hong H; Jung DC; Park S; Kim J Med Phys; 2017 Jul; 44(7):3604-3614. PubMed ID: 28376281 [TBL] [Abstract][Full Text] [Related]
7. Discriminating malignant and benign clinical T1 renal masses on computed tomography: A pragmatic radiomics and machine learning approach. Uhlig J; Biggemann L; Nietert MM; Beißbarth T; Lotz J; Kim HS; Trojan L; Uhlig A Medicine (Baltimore); 2020 Apr; 99(16):e19725. PubMed ID: 32311963 [TBL] [Abstract][Full Text] [Related]
9. Automated classification of solid renal masses on contrast-enhanced computed tomography images using convolutional neural network with decision fusion. Zabihollahy F; Schieda N; Krishna S; Ukwatta E Eur Radiol; 2020 Sep; 30(9):5183-5190. PubMed ID: 32350661 [TBL] [Abstract][Full Text] [Related]
10. A Radiomic-based Machine Learning Algorithm to Reliably Differentiate Benign Renal Masses from Renal Cell Carcinoma. Nassiri N; Maas M; Cacciamani G; Varghese B; Hwang D; Lei X; Aron M; Desai M; Oberai AA; Cen SY; Gill IS; Duddalwar VA Eur Urol Focus; 2022 Jul; 8(4):988-994. PubMed ID: 34538748 [TBL] [Abstract][Full Text] [Related]
11. Machine learning-based quantitative texture analysis of CT images of small renal masses: Differentiation of angiomyolipoma without visible fat from renal cell carcinoma. Feng Z; Rong P; Cao P; Zhou Q; Zhu W; Yan Z; Liu Q; Wang W Eur Radiol; 2018 Apr; 28(4):1625-1633. PubMed ID: 29134348 [TBL] [Abstract][Full Text] [Related]
12. Differentiation of benign from malignant solid renal lesions with MRI-based radiomics and machine learning. Massa'a RN; Stoeckl EM; Lubner MG; Smith D; Mao L; Shapiro DD; Abel EJ; Wentland AL Abdom Radiol (NY); 2022 Aug; 47(8):2896-2904. PubMed ID: 35723716 [TBL] [Abstract][Full Text] [Related]
13. Radiomics of small renal masses on multiphasic CT: accuracy of machine learning-based classification models for the differentiation of renal cell carcinoma and angiomyolipoma without visible fat. Yang R; Wu J; Sun L; Lai S; Xu Y; Liu X; Ma Y; Zhen X Eur Radiol; 2020 Feb; 30(2):1254-1263. PubMed ID: 31468159 [TBL] [Abstract][Full Text] [Related]
14. Multilocular cystic renal cell carcinoma: clinicopathological features and preoperative prediction using multiphase computed tomography. You D; Shim M; Jeong IG; Song C; Kim JK; Ro JY; Hong JH; Ahn H; Kim CS BJU Int; 2011 Nov; 108(9):1444-9. PubMed ID: 21722289 [TBL] [Abstract][Full Text] [Related]
15. Multiparametric MRI-Based Machine Learning Models for the Characterization of Cystic Renal Masses Compared to the Bosniak Classification, Version 2019: A Multicenter Study. Kang H; Xie W; Wang H; Guo H; Jiang J; Liu Z; Ding X; Li L; Xu W; Zhao J; Bai X; Cui M; Ye H; Wang B; Yang D; Ma X; Liu J; Wang H Acad Radiol; 2024 Aug; 31(8):3223-3234. PubMed ID: 38242731 [TBL] [Abstract][Full Text] [Related]
17. Deep feature classification of angiomyolipoma without visible fat and renal cell carcinoma in abdominal contrast-enhanced CT images with texture image patches and hand-crafted feature concatenation. Lee H; Hong H; Kim J; Jung DC Med Phys; 2018 Apr; 45(4):1550-1561. PubMed ID: 29474742 [TBL] [Abstract][Full Text] [Related]
18. Malignancy risk stratification of cystic renal lesions based on a contrast-enhanced CT-based machine learning model and a clinical decision algorithm. Dana J; Lefebvre TL; Savadjiev P; Bodard S; Gauvin S; Bhatnagar SR; Forghani R; Hélénon O; Reinhold C Eur Radiol; 2022 Jun; 32(6):4116-4127. PubMed ID: 35066631 [TBL] [Abstract][Full Text] [Related]
19. Importance of phase enhancement for machine learning classification of solid renal masses using texture analysis features at multi-phasic CT. Schieda N; Nguyen K; Thornhill RE; McInnes MDF; Wu M; James N Abdom Radiol (NY); 2020 Sep; 45(9):2786-2796. PubMed ID: 32627049 [TBL] [Abstract][Full Text] [Related]
20. Influence of segmentation margin on machine learning-based high-dimensional quantitative CT texture analysis: a reproducibility study on renal clear cell carcinomas. Kocak B; Ates E; Durmaz ES; Ulusan MB; Kilickesmez O Eur Radiol; 2019 Sep; 29(9):4765-4775. PubMed ID: 30747300 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]