These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
418 related articles for article (PubMed ID: 37185432)
1. Cancer-Associated Fibroblasts and Extracellular Matrix: Therapeutical Strategies for Modulating the Cholangiocarcinoma Microenvironment. Minini M; Fouassier L Curr Oncol; 2023 Apr; 30(4):4185-4196. PubMed ID: 37185432 [TBL] [Abstract][Full Text] [Related]
2. Cancer-associated fibroblasts in intrahepatic cholangiocarcinoma progression and therapeutic resistance. Ravichandra A; Bhattacharjee S; Affò S Adv Cancer Res; 2022; 156():201-226. PubMed ID: 35961700 [TBL] [Abstract][Full Text] [Related]
3. Tumor Microenvironment and its Implications for Antitumor Immunity in Cholangiocarcinoma: Future Perspectives for Novel Therapies. Cao H; Huang T; Dai M; Kong X; Liu H; Zheng Z; Sun G; Sun G; Rong D; Jin Z; Tang W; Xia Y Int J Biol Sci; 2022; 18(14):5369-5390. PubMed ID: 36147461 [TBL] [Abstract][Full Text] [Related]
4. The Tumor Immune Microenvironment plays a Key Role in Driving the Progression of Cholangiocarcinoma. Zhang Y; Yan HJ; Wu J Curr Cancer Drug Targets; 2024; 24(7):681-700. PubMed ID: 38213139 [TBL] [Abstract][Full Text] [Related]
5. Tumor immune microenvironment and the current immunotherapy of cholangiocarcinoma (Review). Yang S; Zou R; Dai Y; Hu Y; Li F; Hu H Int J Oncol; 2023 Dec; 63(6):. PubMed ID: 37888583 [TBL] [Abstract][Full Text] [Related]
6. Cancer-Associated Fibroblasts in Hepatocellular Carcinoma and Cholangiocarcinoma. Ying F; Chan MSM; Lee TKW Cell Mol Gastroenterol Hepatol; 2023; 15(4):985-999. PubMed ID: 36708970 [TBL] [Abstract][Full Text] [Related]
7. Cholangiocarcinoma: what are the most valuable therapeutic targets - cancer-associated fibroblasts, immune cells, or beyond T cells? Wang J; Loeuillard E; Gores GJ; Ilyas SI Expert Opin Ther Targets; 2021 Oct; 25(10):835-845. PubMed ID: 34806500 [TBL] [Abstract][Full Text] [Related]
8. The landscape of cancer-associated fibroblasts in colorectal cancer liver metastases. Giguelay A; Turtoi E; Khelaf L; Tosato G; Dadi I; Chastel T; Poul MA; Pratlong M; Nicolescu S; Severac D; Adenis A; Sgarbura O; Carrère S; Rouanet P; Quenet F; Ychou M; Pourquier D; Colombo PE; Turtoi A; Colinge J Theranostics; 2022; 12(17):7624-7639. PubMed ID: 36438498 [No Abstract] [Full Text] [Related]
9. Architecture of Cancer-Associated Fibroblasts in Tumor Microenvironment: Mapping Their Origins, Heterogeneity, and Role in Cancer Therapy Resistance. Dzobo K; Dandara C OMICS; 2020 Jun; 24(6):314-339. PubMed ID: 32496970 [TBL] [Abstract][Full Text] [Related]
10. Targeting the tumor microenvironment in cholangiocarcinoma: implications for therapy. Louis C; Edeline J; Coulouarn C Expert Opin Ther Targets; 2021 Feb; 25(2):153-162. PubMed ID: 33502260 [No Abstract] [Full Text] [Related]
11. The immune milieu of cholangiocarcinoma: From molecular pathogenesis to precision medicine. Rimassa L; Personeni N; Aghemo A; Lleo A J Autoimmun; 2019 Jun; 100():17-26. PubMed ID: 30862450 [TBL] [Abstract][Full Text] [Related]
12. Resveratrol interrupts the pro-invasive communication between cancer associated fibroblasts and cholangiocarcinoma cells. Thongchot S; Ferraresi A; Vidoni C; Loilome W; Yongvanit P; Namwat N; Isidoro C Cancer Lett; 2018 Aug; 430():160-171. PubMed ID: 29802929 [TBL] [Abstract][Full Text] [Related]
13. Crenigacestat blocking notch pathway reduces liver fibrosis in the surrounding ecosystem of intrahepatic CCA viaTGF-β inhibition. Mancarella S; Gigante I; Serino G; Pizzuto E; Dituri F; Valentini MF; Wang J; Chen X; Armentano R; Calvisi DF; Giannelli G J Exp Clin Cancer Res; 2022 Nov; 41(1):331. PubMed ID: 36443822 [TBL] [Abstract][Full Text] [Related]
14. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mao X; Xu J; Wang W; Liang C; Hua J; Liu J; Zhang B; Meng Q; Yu X; Shi S Mol Cancer; 2021 Oct; 20(1):131. PubMed ID: 34635121 [TBL] [Abstract][Full Text] [Related]
15. Cancer associated-fibroblast-derived exosomes in cancer progression. Li C; Teixeira AF; Zhu HJ; Ten Dijke P Mol Cancer; 2021 Dec; 20(1):154. PubMed ID: 34852849 [TBL] [Abstract][Full Text] [Related]
17. The role of matrix stiffness in cancer stromal cell fate and targeting therapeutic strategies. Wei J; Yao J; Yan M; Xie Y; Liu P; Mao Y; Li X Acta Biomater; 2022 Sep; 150():34-47. PubMed ID: 35948177 [TBL] [Abstract][Full Text] [Related]
18. Heterogeneity of Cholangiocarcinoma Immune Biology. Vita F; Olaizola I; Amato F; Rae C; Marco S; Banales JM; Braconi C Cells; 2023 Mar; 12(6):. PubMed ID: 36980187 [TBL] [Abstract][Full Text] [Related]
19. Heterogeneity, crosstalk, and targeting of cancer-associated fibroblasts in cholangiocarcinoma. Cantallops Vilà P; Ravichandra A; Agirre Lizaso A; Perugorria MJ; Affò S Hepatology; 2024 Apr; 79(4):941-958. PubMed ID: 37018128 [TBL] [Abstract][Full Text] [Related]
20. Metabolic reprogramming and crosstalk of cancer-related fibroblasts and immune cells in the tumor microenvironment. Zhu Y; Li X; Wang L; Hong X; Yang J Front Endocrinol (Lausanne); 2022; 13():988295. PubMed ID: 36046791 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]