BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 37185527)

  • 1. The Molecular Basis of Organic Chemiluminescence.
    Cabello MC; Bartoloni FH; Bastos EL; Baader WJ
    Biosensors (Basel); 2023 Apr; 13(4):. PubMed ID: 37185527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemiluminescence efficiency of catalyzed 1,2-dioxetanone decomposition determined by steric effects.
    Bartoloni FH; de Oliveira MA; Ciscato LF; Augusto FA; Bastos EL; Baader WJ
    J Org Chem; 2015 Apr; 80(8):3745-51. PubMed ID: 25831218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficiency of electron transfer initiated chemiluminescence.
    Augusto FA; de Souza GA; de Souza Júnior SP; Khalid M; Baader WJ
    Photochem Photobiol; 2013; 89(6):1299-317. PubMed ID: 23711099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of activated chemiluminescence of cyclic peroxides: 1,2-dioxetanes and 1,2-dioxetanones.
    Augusto FA; Francés-Monerris A; Fdez Galván I; Roca-Sanjuán D; Bastos EL; Baader WJ; Lindh R
    Phys Chem Chem Phys; 2017 Feb; 19(5):3955-3962. PubMed ID: 28106183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Update on General Chemiexcitation Mechanisms in Cyclic Organic Peroxide Decomposition and the Chemiluminescent Peroxyoxalate Reaction in Aqueous Media.
    Cabello MC; Bartoloni FH; Baader WJ
    Photochem Photobiol; 2023 Mar; 99(2):235-250. PubMed ID: 35837818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three S
    Yue L; Liu YJ
    J Chem Theory Comput; 2021 Jun; 17(6):3483-3494. PubMed ID: 34002603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning the Intramolecular Chemiexcitation of Neutral Dioxetanones by Interaction with Ionic Species.
    Magalhães CM; Esteves da Silva JCG; Pinto da Silva L
    Molecules; 2022 Jun; 27(12):. PubMed ID: 35744984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thorough Understanding of Bioluminophore Production in Bacterial Bioluminescence.
    Pi S; Luo Y; Liu YJ
    J Phys Chem A; 2022 Sep; 126(38):6604-6616. PubMed ID: 36104940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemi- and Bioluminescence of Cyclic Peroxides.
    Vacher M; Fdez Galván I; Ding BW; Schramm S; Berraud-Pache R; Naumov P; Ferré N; Liu YJ; Navizet I; Roca-Sanjuán D; Baader WJ; Lindh R
    Chem Rev; 2018 Aug; 118(15):6927-6974. PubMed ID: 29493234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical Study of the Thermolysis Reaction and Chemiexcitation of Coelenterazine Dioxetanes.
    Magalhães CM; Esteves da Silva JCG; Pinto da Silva L
    J Phys Chem A; 2022 Jun; 126(22):3486-3494. PubMed ID: 35612291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revision of singlet quantum yields in the catalyzed decomposition of cyclic peroxides.
    Almeida de Oliveira M; Bartoloni FH; Augusto FA; Ciscato LF; Bastos EL; Baader WJ
    J Org Chem; 2012 Dec; 77(23):10537-44. PubMed ID: 22852861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental evidence of the occurrence of intramolecular electron transfer in catalyzed 1,2-dioxetane decomposition.
    Ciscato LF; Bartoloni FH; Weiss D; Beckert R; Baader WJ
    J Org Chem; 2010 Oct; 75(19):6574-80. PubMed ID: 20825174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation on the chemiluminescence reaction of the phenylhydrazine-luminol-peroxide system.
    Chandel AL; Khan SA; Kher RS; Tiwari A
    Luminescence; 2012; 27(6):455-8. PubMed ID: 22238221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crucial dependence of chemiluminescence efficiency on the syn/anti conformation for intramolecular charge-transfer-induced decomposition of bicyclic dioxetanes bearing an oxidoaryl group.
    Matsumoto M; Suzuki H; Watanabe N; Ijuin HK; Tanaka J; Tanaka C
    J Org Chem; 2011 Jun; 76(12):5006-17. PubMed ID: 21574649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretically obtained insight into the mechanism and dioxetanone species responsible for the singlet chemiexcitation of Coelenterazine.
    Min CG; Ferreira PJO; Pinto da Silva L
    J Photochem Photobiol B; 2017 Sep; 174():18-26. PubMed ID: 28750319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for the Formation of 1,2-Dioxetane as a High-Energy Intermediate and Possible Chemiexcitation Pathways in the Chemiluminescence of Lophine Peroxides.
    Boaro A; Reis RA; Silva CS; Melo DU; Pinto AGGC; Bartoloni FH
    J Org Chem; 2021 May; 86(9):6633-6647. PubMed ID: 33876635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The reaction mechanism for the high quantum yield of Cypridina (Vargula) bioluminescence supported by the chemiluminescence of 6-aryl-2-methylimidazo[1,2-a]pyrazin-3(7H)-ones (Cypridina luciferin analogues).
    Hirano T; Takahashi Y; Kondo H; Maki S; Kojima S; Ikeda H; Niwa H
    Photochem Photobiol Sci; 2008 Feb; 7(2):197-207. PubMed ID: 18264587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the Chemiluminescent Reaction of a Fluorinated Analog of Marine Coelenterazine.
    Magalhães CM; Esteves da Silva JCG; Pinto da Silva L
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemiluminescence and Bioluminescence Imaging for Biosensing and Therapy:
    Yan Y; Shi P; Song W; Bi S
    Theranostics; 2019; 9(14):4047-4065. PubMed ID: 31281531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding bacterial bioluminescence: a theoretical study of the entire process, from reduced flavin to light emission.
    Hou C; Liu YJ; Ferré N; Fang WH
    Chemistry; 2014 Jun; 20(26):7979-86. PubMed ID: 24825310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.