BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 37185535)

  • 1. Wearable Multisensor Ring-Shaped Probe for Assessing Stress and Blood Oxygenation: Design and Preliminary Measurements.
    Valenti S; Volpes G; Parisi A; Peri D; Lee J; Faes L; Busacca A; Pernice R
    Biosensors (Basel); 2023 Apr; 13(4):. PubMed ID: 37185535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wearable Ring-Shaped Biomedical Device for Physiological Monitoring through Finger-Based Acquisition of Electrocardiographic, Photoplethysmographic, and Galvanic Skin Response Signals: Design and Preliminary Measurements.
    Volpes G; Valenti S; Genova G; Barà C; Parisi A; Faes L; Busacca A; Pernice R
    Biosensors (Basel); 2024 Apr; 14(4):. PubMed ID: 38667198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of Electrodermal Activity and Photoplethysmography Data Acquisition at the Foot Using a Sock Form Factor.
    Ferreira AF; da Silva HP; Alves H; Marques N; Fred A
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous Stress Detection Using Wearable Sensors in Real Life: Algorithmic Programming Contest Case Study.
    Can YS; Chalabianloo N; Ekiz D; Ersoy C
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31003456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a Novel Wearable Ring-Shaped Biosensor.
    Santarelli L; Diyakonova O; Betti S; Esposito D; Castro E; Cavallo F
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3750-3753. PubMed ID: 30441182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoplethysmography-based derivation of physiological information using the BioPoint.
    Gagnon-Turcotte G; Cote-Allard U; Mascret Q; Torresen J; Gosselin B
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-5. PubMed ID: 38083646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Objective stress monitoring based on wearable sensors in everyday settings.
    Han HJ; Labbaf S; Borelli JL; Dutt N; Rahmani AM
    J Med Eng Technol; 2020 May; 44(4):177-189. PubMed ID: 32589065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of Atrial Fibrillation Using a Ring-Type Wearable Device (CardioTracker) and Deep Learning Analysis of Photoplethysmography Signals: Prospective Observational Proof-of-Concept Study.
    Kwon S; Hong J; Choi EK; Lee B; Baik C; Lee E; Jeong ER; Koo BK; Oh S; Yi Y
    J Med Internet Res; 2020 May; 22(5):e16443. PubMed ID: 32348254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wearable Sensor System to Monitor Physical Activity and the Physiological Effects of Heat Exposure.
    Pham S; Yeap D; Escalera G; Basu R; Wu X; Kenyon NJ; Hertz-Picciotto I; Ko MJ; Davis CE
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32041097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enabling Continuous Wearable Reflectance Pulse Oximetry at the Sternum.
    Chan M; Ganti VG; Heller JA; Abdallah CA; Etemadi M; Inan OT
    Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Progress in Flexible and Wearable All Organic Photoplethysmography Sensors for SpO
    Dcosta JV; Ochoa D; Sanaur S
    Adv Sci (Weinh); 2023 Nov; 10(31):e2302752. PubMed ID: 37740697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoplethysmographic Time-Domain Heart Rate Measurement Algorithm for Resource-Constrained Wearable Devices and its Implementation.
    Wójcikowski M; Pankiewicz B
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32210210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reference signal less Fourier analysis based motion artifact removal algorithm for wearable photoplethysmography devices to estimate heart rate during physical exercises.
    Pankaj ; Kumar A; Komaragiri R; Kumar M
    Comput Biol Med; 2022 Feb; 141():105081. PubMed ID: 34952340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress Monitoring Using Wearable Sensors: A Pilot Study and Stress-Predict Dataset.
    Iqbal T; Simpkin AJ; Roshan D; Glynn N; Killilea J; Walsh J; Molloy G; Ganly S; Ryman H; Coen E; Elahi A; Wijns W; Shahzad A
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pilot Study Assessing the Influence of Skin Type on the Heart Rate Measurements Obtained by Photoplethysmography with the Apple Watch.
    Sañudo B; De Hoyo M; Muñoz-López A; Perry J; Abt G
    J Med Syst; 2019 May; 43(7):195. PubMed ID: 31119387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interface sensors with skin piezo-thermic transduction enable motion artifact removal for wearable physiological monitoring.
    Wang L; Liu S; Li G; Zhu R
    Biosens Bioelectron; 2021 Sep; 188():113325. PubMed ID: 34030098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Textile Sleeve for Monitoring Oxygen Saturation Using Multichannel Optical Fibre Photoplethysmography.
    Ballaji HK; Correia R; Korposh S; Hayes-Gill BR; Hernandez FU; Salisbury B; Morgan SP
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33212998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reflection-Boosted Wearable Ring-Type Pulse Oximeters for SpO
    Joo MG; Lim DH; Park KK; Baek J; Choi JM; Baac HW
    Biosensors (Basel); 2023 Jul; 13(7):. PubMed ID: 37504110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can Wearable Devices Accurately Measure Heart Rate Variability? A Systematic Review.
    Georgiou K; Larentzakis AV; Khamis NN; Alsuhaibani GI; Alaska YA; Giallafos EJ
    Folia Med (Plovdiv); 2018 Mar; 60(1):7-20. PubMed ID: 29668452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Review of Wearable Multi-Wavelength Photoplethysmography.
    Ray D; Collins T; Woolley S; Ponnapalli P
    IEEE Rev Biomed Eng; 2023; 16():136-151. PubMed ID: 34669577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.