BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 37185543)

  • 1. A Colorimetric Aptasensor for Ochratoxin A Detection Based on Tetramethylrhodamine Charge Effect-Assisted Silver Enhancement.
    Yang X; Huang R; Xiong L; Chen F; Sun W; Yu L
    Biosensors (Basel); 2023 Apr; 13(4):. PubMed ID: 37185543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A colorimetric aptasensor for detecting ochratoxin A based on label-free aptamer and gold nanozyme.
    Tang J; Tian B; Tao X
    Anal Sci; 2023 Oct; 39(10):1623-1626. PubMed ID: 37566171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel aptasensor based on DNA hydrogel for sensitive visual detection of ochratoxin A.
    Hao L; Liu X; Xu S; An F; Gu H; Xu F
    Mikrochim Acta; 2021 Oct; 188(11):395. PubMed ID: 34709464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Polyamidoamine-Based Electrochemical Aptasensor for Sensitive Detection of Ochratoxin A.
    Chen X; Gao D; Chen J; Wang X; Peng C; Gao H; Wang Y; Li Z; Niu H
    Biosensors (Basel); 2023 Oct; 13(11):. PubMed ID: 37998130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ultrasensitive signal-on electrochemical aptasensor for ochratoxin A determination based on DNA controlled layer-by-layer assembly of dual gold nanoparticle conjugates.
    Chen W; Yan C; Cheng L; Yao L; Xue F; Xu J
    Biosens Bioelectron; 2018 Oct; 117():845-851. PubMed ID: 30096739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colorimetric aptasensor for ochratoxin A detection based on enzyme-induced gold nanoparticle aggregation.
    He Y; Tian F; Zhou J; Zhao Q; Fu R; Jiao B
    J Hazard Mater; 2020 Apr; 388():121758. PubMed ID: 31796354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aptamer-based Colorimetric Biosensing of Ochratoxin A in Fortified White Grape Wine Sample Using Unmodified Gold Nanoparticles.
    Yin X; Wang S; Liu X; He C; Tang Y; Li Q; Liu J; Su H; Tan T; Dong Y
    Anal Sci; 2017; 33(6):659-664. PubMed ID: 28603182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Aptamer-Based Lateral Flow Biosensor for Low-Cost, Rapid and Instrument-Free Detection of Ochratoxin A in Food Samples.
    Mermiga E; Pagkali V; Kokkinos C; Economou A
    Molecules; 2023 Dec; 28(24):. PubMed ID: 38138623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fluorescence and surface-enhanced Raman scattering dual-mode aptasensor for rapid and sensitive detection of ochratoxin A.
    Wang H; Zhao B; Ye Y; Qi X; Zhang Y; Xia X; Wang X; Zhou N
    Biosens Bioelectron; 2022 Jul; 207():114164. PubMed ID: 35320745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exonuclease-assisted multicolor aptasensor for visual detection of ochratoxin A based on G-quadruplex-hemin DNAzyme-mediated etching of gold nanorod.
    Yu X; Lin Y; Wang X; Xu L; Wang Z; Fu F
    Mikrochim Acta; 2018 Apr; 185(5):259. PubMed ID: 29680954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA walker-assisted aptasensor for highly sensitive determination of Ochratoxin A.
    Wang Y; Song W; Zhao H; Ma X; Yang S; Qiao X; Sheng Q; Yue T
    Biosens Bioelectron; 2021 Jun; 182():113171. PubMed ID: 33773380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colorimetric and photothermal dual-mode aptasensor with redox cycling amplification for the detection of ochratoxin A in corn samples.
    Tang J; Liu J; Wang F; Yao Y; Hu R
    Food Chem; 2024 May; 439():137968. PubMed ID: 38043279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly sensitive colorimetric aptasensor for ochratoxin A detection based on enzyme-encapsulated liposome.
    Lin C; Zheng H; Sun M; Guo Y; Luo F; Guo L; Qiu B; Lin Z; Chen G
    Anal Chim Acta; 2018 Mar; 1002():90-96. PubMed ID: 29306417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A label-free aptasensor based on electrodeposition of gold nanoparticles on silver-based metal-organic frameworks for measuring ochratoxin A in black and red pepper.
    Amini-Nogorani E; Zare HR; Jahangiri-Dehaghani F; Benvidi A
    Anal Methods; 2024 Mar; 16(11):1631-1638. PubMed ID: 38410935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust and facile label-free colorimetric aptasensor for ochratoxin A detection using aptamer-enhanced oxidase-like activity of MnO
    Lv X; Frahat Foda M; He J; Zhou J; Cai J
    Food Chem; 2023 Feb; 401():134144. PubMed ID: 36108385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly stable colorimetric aptamer sensors for detection of ochratoxin A through optimizing the sequence with the covalent conjugation of hemin.
    Lee J; Jeon CH; Ahn SJ; Ha TH
    Analyst; 2014 Apr; 139(7):1622-7. PubMed ID: 24519363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanoparticle-based colorimetric aptasensor for rapid detection of multiple mycotoxins in rice.
    Li R; Li L; Huang T; Liu X; Chen Q; Jin G; Cao H
    Anal Methods; 2021 Dec; 13(47):5749-5755. PubMed ID: 34813640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Persistent luminescence nanorod based luminescence resonance energy transfer aptasensor for autofluorescence-free detection of mycotoxin.
    Jiang YY; Zhao X; Chen LJ; Yang C; Yin XB; Yan XP
    Talanta; 2020 Oct; 218():121101. PubMed ID: 32797868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-enhanced Raman spectroscopy aptasensor for simultaneous determination of ochratoxin A and zearalenone using Au@Ag core-shell nanoparticles and gold nanorods.
    Chen R; Li S; Sun Y; Huo B; Xia Y; Qin Y; Li S; Shi B; He D; Liang J; Gao Z
    Mikrochim Acta; 2021 Jul; 188(8):281. PubMed ID: 34331147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold nanoparticles mediated designing of versatile aptasensor for colorimetric/electrochemical dual-channel detection of aflatoxin B1.
    Qian J; Ren C; Wang C; An K; Cui H; Hao N; Wang K
    Biosens Bioelectron; 2020 Oct; 166():112443. PubMed ID: 32777723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.