These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 37185544)

  • 1. Applications of Transistor-Based Biochemical Sensors.
    Gao Q; Fu J; Li S; Ming D
    Biosensors (Basel); 2023 Apr; 13(4):. PubMed ID: 37185544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionalized Organic Thin Film Transistors for Biosensing.
    Wang N; Yang A; Fu Y; Li Y; Yan F
    Acc Chem Res; 2019 Feb; 52(2):277-287. PubMed ID: 30620566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic Transistor-Based Chemical Sensors for Wearable Bioelectronics.
    Lee MY; Lee HR; Park CH; Han SG; Oh JH
    Acc Chem Res; 2018 Nov; 51(11):2829-2838. PubMed ID: 30403337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors.
    Gao N; Zhou W; Jiang X; Hong G; Fu TM; Lieber CM
    Nano Lett; 2015 Mar; 15(3):2143-8. PubMed ID: 25664395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Sensitive and Wearable In
    Liu Q; Liu Y; Wu F; Cao X; Li Z; Alharbi M; Abbas AN; Amer MR; Zhou C
    ACS Nano; 2018 Feb; 12(2):1170-1178. PubMed ID: 29338249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Wearable Microneedle-Based Extended Gate Transistor for Real-Time Detection of Sodium in Interstitial Fluids.
    Zheng Y; Omar R; Zhang R; Tang N; Khatib M; Xu Q; Milyutin Y; Saliba W; Broza YY; Wu W; Yuan M; Haick H
    Adv Mater; 2022 Mar; 34(10):e2108607. PubMed ID: 34918409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in field-effect biosensors towards point-of-use.
    Chen S; Bashir R
    Nanotechnology; 2023 Sep; 34(49):. PubMed ID: 37625391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potentio-tunable FET sensor having a redox-polarizable single electrode for the implementation of a wearable, continuous multi-analyte monitoring device.
    Lefler S; Ben-Shachar B; Masasa H; Schreiber D; Tamir I
    Anal Bioanal Chem; 2022 Apr; 414(10):3267-3277. PubMed ID: 35103805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field effect transistor based wearable biosensors for healthcare monitoring.
    Nguyen TT; Nguyen CM; Huynh MA; Vu HH; Nguyen TK; Nguyen NT
    J Nanobiotechnology; 2023 Nov; 21(1):411. PubMed ID: 37936115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. OECT - Inspired electrical detection.
    Yu S; Sun X; Liu J; Li S
    Talanta; 2024 Aug; 275():126180. PubMed ID: 38703480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Paper-based field-effect transistor sensors.
    Bushra KA; Prasad KS
    Talanta; 2022 Mar; 239():123085. PubMed ID: 34890939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Achievements and Challenges for Real-Time Sensing of Analytes in Sweat within Wearable Platforms.
    Brothers MC; DeBrosse M; Grigsby CC; Naik RR; Hussain SM; Heikenfeld J; Kim SS
    Acc Chem Res; 2019 Feb; 52(2):297-306. PubMed ID: 30688433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoelectronic Heterodyne Sensor: A New Electronic Sensing Paradigm.
    Kulkarni GS; Zang W; Zhong Z
    Acc Chem Res; 2016 Nov; 49(11):2578-2586. PubMed ID: 27668314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transistor-Based Biomolecule Sensors: Recent Technological Advancements and Future Prospects.
    Murugasenapathi NK; Ghosh R; Ramanathan S; Ghosh S; Chinnappan A; Mohamed SAJ; Esther Jebakumari KA; Gopinath SCB; Ramakrishna S; Palanisamy T
    Crit Rev Anal Chem; 2023; 53(5):1044-1065. PubMed ID: 34788167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-Oxide FET Biosensor for Point-of-Care Testing: Overview and Perspective.
    Amen MT; Pham TTT; Cheah E; Tran DP; Thierry B
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36432052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wearable and Multiplexed Biosensors based on Oxide Field-Effect Transistors.
    Ren H; Zhang S; Li D; Tang Y; Chen Y; Wang Y; Liu G; Li F; Liu L; Huang Q; Xing L; Chen X; Wang J; Zhu B
    Small Methods; 2024 Oct; 8(10):e2400781. PubMed ID: 38970541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding Electrophysiological Signals with Organic Electrochemical Transistors.
    Zhong Y; Saleh A; Inal S
    Macromol Biosci; 2021 Nov; 21(11):e2100187. PubMed ID: 34463019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organic electrochemical transistor arrays for real-time mapping of evoked neurotransmitter release in vivo.
    Xie K; Wang N; Lin X; Wang Z; Zhao X; Fang P; Yue H; Kim J; Luo J; Cui S; Yan F; Shi P
    Elife; 2020 Feb; 9():. PubMed ID: 32043970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wearable Fiber-Based Organic Electrochemical Transistors as a Platform for Highly Sensitive Dopamine Monitoring.
    Qing X; Wang Y; Zhang Y; Ding X; Zhong W; Wang D; Wang W; Liu Q; Liu K; Li M; Lu Z
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13105-13113. PubMed ID: 30896142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene electrochemical transistor incorporated with gel electrolyte for wearable and non-invasive glucose monitoring.
    Gao N; Zhou R; Tu B; Tao T; Song Y; Cai Z; He H; Chang G; Wu Y; He Y
    Anal Chim Acta; 2023 Jan; 1239():340719. PubMed ID: 36628721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.