These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 37185623)
1. Unconventional rate law of water photooxidation at TiO Zhang S; Leng W; Liu K Phys Chem Chem Phys; 2023 Apr; ():. PubMed ID: 37185623 [TBL] [Abstract][Full Text] [Related]
2. Quantitative Determination the Role of the Intrabandgap States in Water Photooxidation over Hematite Electrodes. Zhang S; Leng W J Phys Chem Lett; 2023 Oct; 14(41):9316-9323. PubMed ID: 37818854 [TBL] [Abstract][Full Text] [Related]
3. Understanding the enhanced photoelectrochemical water oxidation over Ti-doped α-Fe Zhang S; Zhang Z; Leng W Phys Chem Chem Phys; 2020 Apr; 22(15):7835-7843. PubMed ID: 32227037 [TBL] [Abstract][Full Text] [Related]
4. Advancing the Chemistry of CuWO4 for Photoelectrochemical Water Oxidation. Lhermitte CR; Bartlett BM Acc Chem Res; 2016 Jun; 49(6):1121-9. PubMed ID: 27227377 [TBL] [Abstract][Full Text] [Related]
5. Cobalt phosphate modified TiO2 nanowire arrays as co-catalysts for solar water splitting. Ai G; Mo R; Li H; Zhong J Nanoscale; 2015 Apr; 7(15):6722-8. PubMed ID: 25804292 [TBL] [Abstract][Full Text] [Related]
6. Low Catalyst Loading Enhances Charge Accumulation for Photoelectrochemical Water Splitting. Liu T; Li W; Wang DZ; Luo T; Fei M; Shin D; Waegele MM; Wang D Angew Chem Int Ed Engl; 2023 Aug; 62(34):e202307909. PubMed ID: 37382150 [TBL] [Abstract][Full Text] [Related]
7. Photohole Induced Corrosion of Titanium Dioxide: Mechanism and Solutions. Yang Y; Ling Y; Wang G; Liu T; Wang F; Zhai T; Tong Y; Li Y Nano Lett; 2015 Oct; 15(10):7051-7. PubMed ID: 26426759 [TBL] [Abstract][Full Text] [Related]
8. Water oxidation by P25 TiO O'Rourke C; Mills A Chemosphere; 2021 May; 271():129847. PubMed ID: 33736219 [TBL] [Abstract][Full Text] [Related]
9. Study of the factors affecting the photoelectrode characteristics of a perylene/phthalocyanine bilayer working in the water phase. Abe T; Miyakushi S; Nagai K; Norimatsu T Phys Chem Chem Phys; 2008 Mar; 10(11):1562-8. PubMed ID: 18327312 [TBL] [Abstract][Full Text] [Related]
10. THE NATURE AND CONTROL OF REACTIONS IN BIOLUMINESCENCE : WITH SPECIAL REFERENCE TO THE MECHANISM OF REVERSIBLE AND IRREVERSIBLE INHIBITIONS BY HYDROGEN AND HYDROXYL IONS, TEMPERATURE, PRESSURE, ALCOHOL, URETHANE, AND SULFANILAMIDE IN BACTERIA. Johnson FH; Eyring H; Steblay R; Chaplin H; Huber C; Gherardi G J Gen Physiol; 1945 May; 28(5):463-537. PubMed ID: 19873433 [TBL] [Abstract][Full Text] [Related]
11. Two-Dimensional Sb Modified TiO Gao J; Zhang S; Ma X; Sun Y; Zhang X Nanomaterials (Basel); 2023 Apr; 13(7):. PubMed ID: 37049386 [TBL] [Abstract][Full Text] [Related]
12. Photoelectrochemical behavior of nanostructured TiO(2) thin-film electrodes in contact with aqueous electrolytes containing dissolved pollutants: a model for distinguishing between direct and indirect interfacial hole transfer from photocurrent measurements. Mora-Seró I; Villarreal TL; Bisquert J; Pitarch A; Gómez R; Salvador P J Phys Chem B; 2005 Mar; 109(8):3371-80. PubMed ID: 16851367 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of photocatalytic water oxidation on small TiO Muuronen M; Parker SM; Berardo E; Le A; Zwijnenburg MA; Furche F Chem Sci; 2017 Mar; 8(3):2179-2183. PubMed ID: 28507672 [TBL] [Abstract][Full Text] [Related]
14. Tin doping speeds up hole transfer during light-driven water oxidation at hematite photoanodes. Dunn HK; Feckl JM; Müller A; Fattakhova-Rohlfing D; Morehead SG; Roos J; Peter LM; Scheu C; Bein T Phys Chem Chem Phys; 2014 Nov; 16(44):24610-20. PubMed ID: 25310963 [TBL] [Abstract][Full Text] [Related]
15. Visible-light photocurrent response of TiO2-polyheptazine hybrids: evidence for interfacial charge-transfer absorption. Bledowski M; Wang L; Ramakrishnan A; Khavryuchenko OV; Khavryuchenko VD; Ricci PC; Strunk J; Cremer T; Kolbeck C; Beranek R Phys Chem Chem Phys; 2011 Dec; 13(48):21511-9. PubMed ID: 22057224 [TBL] [Abstract][Full Text] [Related]
16. TiO Hsieh PY; Chiu YH; Lai TH; Fang MJ; Wang YT; Hsu YJ ACS Appl Mater Interfaces; 2019 Jan; 11(3):3006-3015. PubMed ID: 30565913 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of water photooxidation reaction at atomically flat TiO2 (rutile) (110) and (100) surfaces: dependence on solution pH. Imanishi A; Okamura T; Ohashi N; Nakamura R; Nakato Y J Am Chem Soc; 2007 Sep; 129(37):11569-78. PubMed ID: 17722924 [TBL] [Abstract][Full Text] [Related]
18. Investigation of the kinetics of a TiO2 photoelectrocatalytic reaction involving charge transfer and recombination through surface states by electrochemical impedance spectroscopy. Leng WH; Zhang Z; Zhang JQ; Cao CN J Phys Chem B; 2005 Aug; 109(31):15008-23. PubMed ID: 16852900 [TBL] [Abstract][Full Text] [Related]
19. Kinetics of Photoelectrochemical Oxidation of Methanol on Hematite Photoanodes. Mesa CA; Kafizas A; Francàs L; Pendlebury SR; Pastor E; Ma Y; Le Formal F; Mayer MT; Grätzel M; Durrant JR J Am Chem Soc; 2017 Aug; 139(33):11537-11543. PubMed ID: 28735533 [TBL] [Abstract][Full Text] [Related]
20. Fluorine and tin co-doping synergistically improves the photoelectrochemical water oxidation performance of TiO Wu T; Chen C; Wei Y; Lu R; Wang L; Jiang X Dalton Trans; 2019 Aug; 48(32):12096-12104. PubMed ID: 31321391 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]