These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 37185623)
21. Enhanced Photoelectrochemical Water-Splitting Property on TiO Zhang T; Lin P; Wei N; Wang D ACS Appl Mater Interfaces; 2020 Apr; 12(17):20110-20118. PubMed ID: 32255600 [TBL] [Abstract][Full Text] [Related]
22. Comparison of the photoelectrochemical oxidation of methanol on rutile TiO2 (001) and (100) single crystal faces studied by intensity modulated photocurrent spectroscopy. Ahmed AY; Oekermann T; Lindner P; Bahnemann D Phys Chem Chem Phys; 2012 Feb; 14(8):2774-83. PubMed ID: 22270325 [TBL] [Abstract][Full Text] [Related]
23. Understanding Surface Modulation to Improve the Photo/Electrocatalysts for Water Oxidation/Reduction. Cho Y; Le TA; Lee H Molecules; 2020 Apr; 25(8):. PubMed ID: 32340202 [TBL] [Abstract][Full Text] [Related]
24. Improved photoelectrochemical water oxidation kinetics using a TiO2 nanorod array photoanode decorated with graphene oxide in a neutral pH solution. Chae SY; Sudhagar P; Fujishima A; Hwang YJ; Joo OS Phys Chem Chem Phys; 2015 Mar; 17(12):7714-9. PubMed ID: 25711207 [TBL] [Abstract][Full Text] [Related]
25. Rate-Limiting O-O Bond Formation Pathways for Water Oxidation on Hematite Photoanode. Zhang Y; Zhang H; Liu A; Chen C; Song W; Zhao J J Am Chem Soc; 2018 Mar; 140(9):3264-3269. PubMed ID: 29455534 [TBL] [Abstract][Full Text] [Related]
26. Chemical discrimination by a kinetic model of organic photooxidation in a heterosupramolecular assembly. Wilson GJ; Will GD J Colloid Interface Sci; 2006 Oct; 302(1):230-9. PubMed ID: 16887133 [TBL] [Abstract][Full Text] [Related]
27. Observation of 4 Yang X; Zheng Z; Hu J; Qu J; Ma D; Li J; Guo C; Li CM iScience; 2021 Dec; 24(12):103500. PubMed ID: 34934920 [TBL] [Abstract][Full Text] [Related]
28. Activation energies for the rate-limiting step in water photooxidation by nanostructured α-Fe2O3 and TiO2. Cowan AJ; Barnett CJ; Pendlebury SR; Barroso M; Sivula K; Grätzel M; Durrant JR; Klug DR J Am Chem Soc; 2011 Jul; 133(26):10134-40. PubMed ID: 21553825 [TBL] [Abstract][Full Text] [Related]
29. Photoelectrochemical water splitting promoted with a disordered surface layer created by electrochemical reduction. Yan P; Liu G; Ding C; Han H; Shi J; Gan Y; Li C ACS Appl Mater Interfaces; 2015 Feb; 7(6):3791-6. PubMed ID: 25621529 [TBL] [Abstract][Full Text] [Related]
30. Interface and surface engineering of hematite photoanode for efficient solar water oxidation. Chen X; Fu Y; Hong L; Kong T; Shi X; Wang G; Qu L; Shen S J Chem Phys; 2020 Jun; 152(24):244707. PubMed ID: 32610948 [TBL] [Abstract][Full Text] [Related]
31. Photoelectrochemical oxidation of methanol on oxide nanosheets. Izawa K; Yamada T; Unal U; Ida S; Altuntasoglu O; Koinuma M; Matsumoto Y J Phys Chem B; 2006 Mar; 110(10):4645-50. PubMed ID: 16526696 [TBL] [Abstract][Full Text] [Related]
32. Insights into the carbonate effect on water oxidation over metal oxide photocatalysts/photoanodes. Kusama H; Kodera M; Yamashita K; Sayama K Phys Chem Chem Phys; 2022 Mar; 24(10):5894-5902. PubMed ID: 35195121 [TBL] [Abstract][Full Text] [Related]
33. Enhancement effects of cobalt phosphate modification on activity for photoelectrochemical water oxidation of TiO2 and mechanism insights. Liu D; Jing L; Luan P; Tang J; Fu H ACS Appl Mater Interfaces; 2013 May; 5(10):4046-52. PubMed ID: 23618060 [TBL] [Abstract][Full Text] [Related]
34. CdS Nanoparticle-Modified α-Fe Yin R; Liu M; Tang R; Yin L Nanoscale Res Lett; 2017 Sep; 12(1):520. PubMed ID: 28866742 [TBL] [Abstract][Full Text] [Related]
35. Controlled charge-dynamics in cobalt-doped TiO Liu C; Wang F; Zhu S; Xu Y; Liang Q; Chen Z J Colloid Interface Sci; 2018 Nov; 530():403-411. PubMed ID: 29982032 [TBL] [Abstract][Full Text] [Related]
36. A mechanism for the hole-mediated water photooxidation on TiO2 (1 0 1) surfaces. Di Valentin C J Phys Condens Matter; 2016 Feb; 28(7):074002. PubMed ID: 26808344 [TBL] [Abstract][Full Text] [Related]
37. Direct Imaging of the Recombination/Reduction Sites in Porous TiO2 Electrodes. Gottesman R; Tirosh S; Barad HN; Zaban A J Phys Chem Lett; 2013 Sep; 4(17):2822-8. PubMed ID: 26706647 [TBL] [Abstract][Full Text] [Related]
38. Solution-processed, antimony-doped tin oxide colloid films enable high-performance TiO2 photoanodes for water splitting. Peng Q; Kalanyan B; Hoertz PG; Miller A; Kim DH; Hanson K; Alibabaei L; Liu J; Meyer TJ; Parsons GN; Glass JT Nano Lett; 2013 Apr; 13(4):1481-8. PubMed ID: 23537229 [TBL] [Abstract][Full Text] [Related]
39. Phosphate Changes Effect of Humic Acids on TiO Long M; Brame J; Qin F; Bao J; Li Q; Alvarez PJ Environ Sci Technol; 2017 Jan; 51(1):514-521. PubMed ID: 27982576 [TBL] [Abstract][Full Text] [Related]
40. Over 75% incident-photon-to-current efficiency without solid electrodes. Plana D; Bradley KA; Tiwari D; Fermín DJ Phys Chem Chem Phys; 2016 May; 18(18):12428-33. PubMed ID: 27103001 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]