BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 37185724)

  • 1. Continuous Flow Separation of Red Blood Cells and Platelets in a Y-Microfluidic Channel Device with Saw-Tooth Profile Electrodes via Low Voltage Dielectrophoresis.
    Hewlin RL; Edwards M
    Curr Issues Mol Biol; 2023 Apr; 45(4):3048-3067. PubMed ID: 37185724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation.
    Piacentini N; Mernier G; Tornay R; Renaud P
    Biomicrofluidics; 2011 Sep; 5(3):34122-341228. PubMed ID: 22662047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dielectrophoresis Separation of Platelets Using a Novel Zigzag Microchannel.
    Guan Y; Liu Y; Lei H; Liu S; Xu F; Meng X; Bai M; Wang X; Yang G
    Micromachines (Basel); 2020 Sep; 11(10):. PubMed ID: 32992689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous dielectrophoretic particle separation using a microfluidic device with 3D electrodes and vaulted obstacles.
    Jia Y; Ren Y; Jiang H
    Electrophoresis; 2015 Aug; 36(15):1744-53. PubMed ID: 25962351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dielectrophoretic separation of platelet cells in a microfluidic channel and optimization with fuzzy logic.
    Ertugrul I; Ulkir O
    RSC Adv; 2020 Sep; 10(56):33731-33738. PubMed ID: 35519028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dielectrophoretic separation of bioparticles in microdevices: a review.
    Jubery TZ; Srivastava SK; Dutta P
    Electrophoresis; 2014 Mar; 35(5):691-713. PubMed ID: 24338825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical investigation of ternary particle separation in a microchannel with a wall-mounted obstacle using dielectrophoresis.
    Derakhshan R; Bozorgzadeh A; Ramiar A
    J Chromatogr A; 2023 Aug; 1702():464079. PubMed ID: 37263054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic device for continuous manipulation of biological cells using dielectrophoresis.
    Das D; Biswas K; Das S
    Med Eng Phys; 2014 Jun; 36(6):726-31. PubMed ID: 24388100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational fluid dynamics modelling of microfluidic channel for dielectrophoretic BioMEMS application.
    Low WS; Kadri NA; Abas WA
    ScientificWorldJournal; 2014; 2014():961301. PubMed ID: 25136701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New Generation Dielectrophoretic-Based Microfluidic Device for Multi-Type Cell Separation.
    Sharbati P; Sadaghiani AK; Koşar A
    Biosensors (Basel); 2023 Mar; 13(4):. PubMed ID: 37185493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array.
    Choi S; Park JK
    Lab Chip; 2005 Oct; 5(10):1161-7. PubMed ID: 16175274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A High-Throughput Microfluidic Cell Sorter Using a Three-Dimensional Coupled Hydrodynamic-Dielectrophoretic Pre-Focusing Module.
    Aghaamoo M; Cardenas-Benitez B; Lee AP
    Micromachines (Basel); 2023 Sep; 14(10):. PubMed ID: 37893250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of optimal electrode geometries for dielectrophoresis using fitness based on simplified particle trajectories.
    Kinio S; Mills JK
    Biomed Microdevices; 2016 Aug; 18(4):69. PubMed ID: 27432322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous Particle Separation Driven by 3D Ag-PDMS Electrodes with Dielectric Electrophoretic Force Coupled with Inertia Force.
    Li X; Duan J; Qu Z; Wang J; Ji M; Zhang B
    Micromachines (Basel); 2022 Jan; 13(1):. PubMed ID: 35056282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chip for dielectrophoretic microbial capture, separation and detection II: experimental study.
    Weber MU; Petkowski JJ; Weber RE; Krajnik B; Stemplewski S; Panek M; Dziubak T; Mrozinska P; Piela A; Paluch E
    Nanotechnology; 2023 Feb; 34(17):. PubMed ID: 36640445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a novel integrated microfluidic chip for continuous separation of circulating tumor cells from peripheral blood cells.
    Bakhshi MS; Rizwan M; Khan GJ; Duan H; Zhai K
    Sci Rep; 2022 Oct; 12(1):17016. PubMed ID: 36220844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabricating a dielectrophoretic microfluidic device using 3D-printed moulds and silver conductive paint.
    Valijam S; Nilsson DPG; Malyshev D; Öberg R; Salehi A; Andersson M
    Sci Rep; 2023 Jun; 13(1):9560. PubMed ID: 37308526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical Study of Particle-Fluid Flow Under AC Electrokinetics in Electrode-Multilayered Microfluidic Device.
    Sato N; Yao J; Sugawara M; Takei M
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):453-463. PubMed ID: 29993454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a Low-Frequency Dielectrophoresis-Based Arc Microfluidic Chip for Multigroup Cell Sorting.
    Nan X; Zhang J; Wang X; Kang T; Cao X; Hao J; Jia Q; Qin B; Mei S; Xu Z
    Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.