BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 37185897)

  • 1. A scalable unsupervised learning of scRNAseq data detects rare cells through integration of structure-preserving embedding, clustering and outlier detection.
    Mallick K; Chakraborty S; Mallik S; Bandyopadhyay S
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37185897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data.
    Gan Y; Chen Y; Xu G; Guo W; Zou G
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37313714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scNAME: neighborhood contrastive clustering with ancillary mask estimation for scRNA-seq data.
    Wan H; Chen L; Deng M
    Bioinformatics; 2022 Mar; 38(6):1575-1583. PubMed ID: 34999761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. scDCCA: deep contrastive clustering for single-cell RNA-seq data based on auto-encoder network.
    Wang J; Xia J; Wang H; Su Y; Zheng CH
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36631401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. scASGC: An adaptive simplified graph convolution model for clustering single-cell RNA-seq data.
    Wang S; Zhang Y; Zhang Y; Wu W; Ye L; Li Y; Su J; Pang S
    Comput Biol Med; 2023 Sep; 163():107152. PubMed ID: 37364529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning deep features and topological structure of cells for clustering of scRNA-sequencing data.
    Wang H; Ma X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35302164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-cell data clustering based on sparse optimization and low-rank matrix factorization.
    Hu Y; Li B; Chen F; Qu K
    G3 (Bethesda); 2021 Jun; 11(6):. PubMed ID: 33787873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network-Based Structural Learning Nonnegative Matrix Factorization Algorithm for Clustering of scRNA-Seq Data.
    Wu W; Ma X
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):566-575. PubMed ID: 35316190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CTEC: a cross-tabulation ensemble clustering approach for single-cell RNA sequencing data analysis.
    Wang L; Hong C; Song J; Yao J
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38552307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of single-cell RNAseq labelling algorithms using cancer datasets.
    Christensen E; Luo P; Turinsky A; Husić M; Mahalanabis A; Naidas A; Diaz-Mejia JJ; Brudno M; Pugh T; Ramani A; Shooshtari P
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36585784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning and statistical methods for clustering single-cell RNA-sequencing data.
    Petegrosso R; Li Z; Kuang R
    Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SSNMDI: a novel joint learning model of semi-supervised non-negative matrix factorization and data imputation for clustering of single-cell RNA-seq data.
    Qiu Y; Yan C; Zhao P; Zou Q
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37122068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. scBKAP: A Clustering Model for Single-Cell RNA-Seq Data Based on Bisecting K-Means.
    Wang X; Gao H; Qi R; Zheng R; Gao X; Yu B
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):2007-2015. PubMed ID: 37015596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FlowGrid enables fast clustering of very large single-cell RNA-seq data.
    Fang X; Ho JWK
    Bioinformatics; 2021 Dec; 38(1):282-283. PubMed ID: 34289014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. scDFC: A deep fusion clustering method for single-cell RNA-seq data.
    Hu D; Liang K; Zhou S; Tu W; Liu M; Liu X
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37280190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. scGAC: a graph attentional architecture for clustering single-cell RNA-seq data.
    Cheng Y; Ma X
    Bioinformatics; 2022 Apr; 38(8):2187-2193. PubMed ID: 35176138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. scMAE: a masked autoencoder for single-cell RNA-seq clustering.
    Fang Z; Zheng R; Li M
    Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38230824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. scDSSC: Deep Sparse Subspace Clustering for scRNA-seq Data.
    Wang H; Zhao J; Zheng C; Su Y
    PLoS Comput Biol; 2022 Dec; 18(12):e1010772. PubMed ID: 36534702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.