These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 37185897)
1. A scalable unsupervised learning of scRNAseq data detects rare cells through integration of structure-preserving embedding, clustering and outlier detection. Mallick K; Chakraborty S; Mallik S; Bandyopadhyay S Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37185897 [TBL] [Abstract][Full Text] [Related]
2. Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data. Gan Y; Chen Y; Xu G; Guo W; Zou G Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37313714 [TBL] [Abstract][Full Text] [Related]
3. scNAME: neighborhood contrastive clustering with ancillary mask estimation for scRNA-seq data. Wan H; Chen L; Deng M Bioinformatics; 2022 Mar; 38(6):1575-1583. PubMed ID: 34999761 [TBL] [Abstract][Full Text] [Related]
4. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering. Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596 [TBL] [Abstract][Full Text] [Related]
5. scDCCA: deep contrastive clustering for single-cell RNA-seq data based on auto-encoder network. Wang J; Xia J; Wang H; Su Y; Zheng CH Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36631401 [TBL] [Abstract][Full Text] [Related]
6. scASGC: An adaptive simplified graph convolution model for clustering single-cell RNA-seq data. Wang S; Zhang Y; Zhang Y; Wu W; Ye L; Li Y; Su J; Pang S Comput Biol Med; 2023 Sep; 163():107152. PubMed ID: 37364529 [TBL] [Abstract][Full Text] [Related]
7. Learning deep features and topological structure of cells for clustering of scRNA-sequencing data. Wang H; Ma X Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35302164 [TBL] [Abstract][Full Text] [Related]
8. Single-cell data clustering based on sparse optimization and low-rank matrix factorization. Hu Y; Li B; Chen F; Qu K G3 (Bethesda); 2021 Jun; 11(6):. PubMed ID: 33787873 [TBL] [Abstract][Full Text] [Related]
9. Network-Based Structural Learning Nonnegative Matrix Factorization Algorithm for Clustering of scRNA-Seq Data. Wu W; Ma X IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):566-575. PubMed ID: 35316190 [TBL] [Abstract][Full Text] [Related]
10. CTEC: a cross-tabulation ensemble clustering approach for single-cell RNA sequencing data analysis. Wang L; Hong C; Song J; Yao J Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38552307 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of single-cell RNAseq labelling algorithms using cancer datasets. Christensen E; Luo P; Turinsky A; Husić M; Mahalanabis A; Naidas A; Diaz-Mejia JJ; Brudno M; Pugh T; Ramani A; Shooshtari P Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36585784 [TBL] [Abstract][Full Text] [Related]
12. Machine learning and statistical methods for clustering single-cell RNA-sequencing data. Petegrosso R; Li Z; Kuang R Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426 [TBL] [Abstract][Full Text] [Related]
13. SSNMDI: a novel joint learning model of semi-supervised non-negative matrix factorization and data imputation for clustering of single-cell RNA-seq data. Qiu Y; Yan C; Zhao P; Zou Q Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37122068 [TBL] [Abstract][Full Text] [Related]
14. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa. Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593 [TBL] [Abstract][Full Text] [Related]
15. scBKAP: A Clustering Model for Single-Cell RNA-Seq Data Based on Bisecting K-Means. Wang X; Gao H; Qi R; Zheng R; Gao X; Yu B IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):2007-2015. PubMed ID: 37015596 [TBL] [Abstract][Full Text] [Related]
16. FlowGrid enables fast clustering of very large single-cell RNA-seq data. Fang X; Ho JWK Bioinformatics; 2021 Dec; 38(1):282-283. PubMed ID: 34289014 [TBL] [Abstract][Full Text] [Related]
17. scDFC: A deep fusion clustering method for single-cell RNA-seq data. Hu D; Liang K; Zhou S; Tu W; Liu M; Liu X Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37280190 [TBL] [Abstract][Full Text] [Related]
18. scGAC: a graph attentional architecture for clustering single-cell RNA-seq data. Cheng Y; Ma X Bioinformatics; 2022 Apr; 38(8):2187-2193. PubMed ID: 35176138 [TBL] [Abstract][Full Text] [Related]
19. scMAE: a masked autoencoder for single-cell RNA-seq clustering. Fang Z; Zheng R; Li M Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38230824 [TBL] [Abstract][Full Text] [Related]
20. scDSSC: Deep Sparse Subspace Clustering for scRNA-seq Data. Wang H; Zhao J; Zheng C; Su Y PLoS Comput Biol; 2022 Dec; 18(12):e1010772. PubMed ID: 36534702 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]