BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 37185977)

  • 21. Immunomagnetic isolation and in vitro expansion of human uveal melanoma cell lines.
    Cools-Lartigue JJ; McCauley CS; Marshall JC; Di Cesare S; Gregoire F; Antecka E; Logan P; Burnier MN
    Mol Vis; 2008 Jan; 14():50-5. PubMed ID: 18246031
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selective trapping of single mammalian breast cancer cells by insulator-based dielectrophoresis.
    Bhattacharya S; Chao TC; Ariyasinghe N; Ruiz Y; Lake D; Ros R; Ros A
    Anal Bioanal Chem; 2014 Mar; 406(7):1855-65. PubMed ID: 24408303
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Separation of viable and nonviable animal cell using dielectrophoretic filter.
    Hakoda M; Wakizaka Y; Hirota Y
    Biotechnol Prog; 2010; 26(4):1061-7. PubMed ID: 20205163
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combining 3D sidewall electrodes and contraction/expansion microstructures in microchip promotes isolation of cancer cells from red blood cells.
    Yao J; Chen J; Cao X; Dong H
    Talanta; 2019 May; 196():546-555. PubMed ID: 30683404
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of a multi-marker immunomagnetic enrichment assay for the quantification of circulating melanoma cells.
    Freeman JB; Gray ES; Millward M; Pearce R; Ziman M
    J Transl Med; 2012 Sep; 10():192. PubMed ID: 22978632
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-purity and label-free isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force.
    Huang SB; Wu MH; Lin YH; Hsieh CH; Yang CL; Lin HC; Tseng CP; Lee GB
    Lab Chip; 2013 Apr; 13(7):1371-83. PubMed ID: 23389102
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Versatile exclusion-based sample preparation platform for integrated rare cell isolation and analyte extraction.
    Pezzi HM; Guckenberger DJ; Schehr JL; Rothbauer J; Stahlfeld C; Singh A; Horn S; Schultz ZD; Bade RM; Sperger JM; Berry SM; Lang JM; Beebe DJ
    Lab Chip; 2018 Nov; 18(22):3446-3458. PubMed ID: 30334061
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SSA-MOA: a novel CTC isolation platform using selective size amplification (SSA) and a multi-obstacle architecture (MOA) filter.
    Kim MS; Sim TS; Kim YJ; Kim SS; Jeong H; Park JM; Moon HS; Kim SI; Gurel O; Lee SS; Lee JG; Park JC
    Lab Chip; 2012 Aug; 12(16):2874-80. PubMed ID: 22684249
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Numerical study of dielectrophoresis-modified inertial migration for overlapping sized cell separation.
    Khan M; Chen X
    Electrophoresis; 2022 Apr; 43(7-8):879-891. PubMed ID: 35015306
    [TBL] [Abstract][Full Text] [Related]  

  • 30. All-in-one centrifugal microfluidic device for size-selective circulating tumor cell isolation with high purity.
    Lee A; Park J; Lim M; Sunkara V; Kim SY; Kim GH; Kim MH; Cho YK
    Anal Chem; 2014 Nov; 86(22):11349-56. PubMed ID: 25317565
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sequential Ensemble-Decision Aliquot Ranking Isolation and Fluorescence
    Xu S; Wu L; Qin Y; Jiang Y; Sun K; Holcomb C; Gravett MG; Vojtech L; Schiro PG; Chiu DT
    Anal Chem; 2021 Feb; 93(6):3196-3201. PubMed ID: 33528996
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dielectrophoretic separation of blood cells.
    Emmerich MEP; Sinnigen AS; Neubauer P; Birkholz M
    Biomed Microdevices; 2022 Aug; 24(3):30. PubMed ID: 36006519
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Label-Free Separation of Circulating Tumor Cells and Clusters by Alternating Frequency Acoustic Field in a Microfluidic Chip.
    Zhang Y; Zhang Z; Zheng D; Huang T; Fu Q; Liu Y
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834750
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sheath-assisted versus sheathless dielectrophoretic particle separation.
    Dalili A; Hoorfar M
    Electrophoresis; 2021 Aug; 42(16):1570-1577. PubMed ID: 34196426
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative study on antibody immobilization strategies for efficient circulating tumor cell capture.
    Ates HC; Ozgur E; Kulah H
    Biointerphases; 2018 Mar; 13(2):021001. PubMed ID: 29571263
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Separation of circulating tumor cells from blood using dielectrophoretic DLD manipulation.
    Rahmati M; Chen X
    Biomed Microdevices; 2021 Sep; 23(4):49. PubMed ID: 34581876
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selective Single-Cell Sorting Using a Multisectorial Electroactive Nanowell Platform.
    Menze L; Duarte PA; Haddon L; Chu M; Chen J
    ACS Nano; 2022 Jan; 16(1):211-220. PubMed ID: 34559518
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP).
    Moon HS; Kwon K; Kim SI; Han H; Sohn J; Lee S; Jung HI
    Lab Chip; 2011 Mar; 11(6):1118-25. PubMed ID: 21298159
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dielectrophoretic chip with multilayer electrodes and micro-cavity array for trapping and programmably releasing single cells.
    Chuang CH; Huang YW; Wu YT
    Biomed Microdevices; 2012 Apr; 14(2):271-8. PubMed ID: 22072154
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.