These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 37186018)

  • 41. Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle.
    Bragina A; Berg C; Cardinale M; Shcherbakov A; Chebotar V; Berg G
    ISME J; 2012 Apr; 6(4):802-13. PubMed ID: 22094342
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Taxonomic and functional turnover are decoupled in European peat bogs.
    Robroek BJM; Jassey VEJ; Payne RJ; Martí M; Bragazza L; Bleeker A; Buttler A; Caporn SJM; Dise NB; Kattge J; Zając K; Svensson BH; van Ruijven J; Verhoeven JTA
    Nat Commun; 2017 Oct; 8(1):1161. PubMed ID: 29079831
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Methane production and oxidation potentials along a fen-bog gradient from southern boreal to subarctic peatlands in Finland.
    Zhang H; Tuittila ES; Korrensalo A; Laine AM; Uljas S; Welti N; Kerttula J; Maljanen M; Elliott D; Vesala T; Lohila A
    Glob Chang Biol; 2021 Sep; 27(18):4449-4464. PubMed ID: 34091981
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Experimental warming alters the community composition, diversity, and N
    Carrell AA; Kolton M; Glass JB; Pelletier DA; Warren MJ; Kostka JE; Iversen CM; Hanson PJ; Weston DJ
    Glob Chang Biol; 2019 Sep; 25(9):2993-3004. PubMed ID: 31148286
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of climate warming on Sphagnum photosynthesis in peatlands depend on peat moisture and species-specific anatomical traits.
    Jassey VEJ; Signarbieux C
    Glob Chang Biol; 2019 Nov; 25(11):3859-3870. PubMed ID: 31502398
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bacterial and fungal communities in a degraded ombrotrophic peatland undergoing natural and managed re-vegetation.
    Elliott DR; Caporn SJ; Nwaishi F; Nilsson RH; Sen R
    PLoS One; 2015; 10(5):e0124726. PubMed ID: 25969988
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rockin' in rhythm, growth dynamics of the peat moss Sphagnum.
    van Es SW
    Physiol Plant; 2020 Apr; 168(4):762-764. PubMed ID: 32297378
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sphagnum establishment in alkaline fens: Importance of weather and water chemistry.
    Vicherová E; Hájek M; Šmilauer P; Hájek T
    Sci Total Environ; 2017 Feb; 580():1429-1438. PubMed ID: 28038871
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Production in peatlands: Comparing ecosystem services of different land use options following conventional farming.
    Liu W; Fritz C; van Belle J; Nonhebel S
    Sci Total Environ; 2023 Jun; 875():162534. PubMed ID: 36878291
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nutrient removal potential and biomass production by Phragmites australis and Typha latifolia on European rewetted peat and mineral soils.
    Geurts JJM; Oehmke C; Lambertini C; Eller F; Sorrell BK; Mandiola SR; Grootjans AP; Brix H; Wichtmann W; Lamers LPM; Fritz C
    Sci Total Environ; 2020 Dec; 747():141102. PubMed ID: 32795788
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effect of temperature on growth and competition between Sphagnum species.
    Breeuwer A; Heijmans MM; Robroek BJ; Berendse F
    Oecologia; 2008 May; 156(1):155-67. PubMed ID: 18283501
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Desiccation tolerance of Sphagnum revisited: a puzzle resolved.
    Hájek T; Vicherová E
    Plant Biol (Stuttg); 2014 Jul; 16(4):765-73. PubMed ID: 25068160
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sphagnum Species Modulate their Phenolic Profiles and Mycorrhizal Colonization of Surrounding Andromeda polifolia along Peatland Microhabitats.
    Chiapusio G; Jassey VEJ; Bellvert F; Comte G; Weston LA; Delarue F; Buttler A; Toussaint ML; Binet P
    J Chem Ecol; 2018 Dec; 44(12):1146-1157. PubMed ID: 30294748
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rapid loss of an ecosystem engineer:
    Norby RJ; Childs J; Hanson PJ; Warren JM
    Ecol Evol; 2019 Nov; 9(22):12571-12585. PubMed ID: 31788198
    [No Abstract]   [Full Text] [Related]  

  • 55. Influence of temperature on the δ
    van Winden JF; Talbot HM; Reichart GJ; McNamara NP; Benthien A; Sinninghe Damsté JS
    Geobiology; 2020 Jul; 18(4):497-507. PubMed ID: 32180328
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Environmental patterns of brown moss- and Sphagnum-associated microbial communities.
    Tveit AT; Kiss A; Winkel M; Horn F; Hájek T; Svenning MM; Wagner D; Liebner S
    Sci Rep; 2020 Dec; 10(1):22412. PubMed ID: 33376244
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Impact of Peat Mining and Restoration on Methane Turnover Potential and Methane-Cycling Microorganisms in a Northern Bog.
    Reumer M; Harnisz M; Lee HJ; Reim A; Grunert O; Putkinen A; Fritze H; Bodelier PLE; Ho A
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29180368
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Climate-induced hydrological fluctuations shape Arctic Alaskan peatland plant communities.
    Gałka M; Diaconu AC; Cwanek A; Hedenäs L; Knorr KH; Kołaczek P; Łokas E; Obremska M; Swindles GT; Feurdean A
    Sci Total Environ; 2023 Dec; 905():167381. PubMed ID: 37769738
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fine-scale horizontal and vertical micro-distribution patterns of testate amoebae along a narrow Fen/Bog gradient.
    Jassey VE; Chiapusio G; Mitchell EA; Binet P; Toussaint ML; Gilbert D
    Microb Ecol; 2011 Feb; 61(2):374-85. PubMed ID: 20938656
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nutrient stoichiometry in Sphagnum along a nitrogen deposition gradient in highly polluted region of Central-East Europe.
    Jiroušek M; Hájek M; Bragazza L
    Environ Pollut; 2011 Feb; 159(2):585-90. PubMed ID: 21071120
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.