These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37186412)

  • 1. An updated dataset and a structure-based prediction model for protein-RNA binding affinity.
    Hong X; Tong X; Xie J; Liu P; Liu X; Song Q; Liu S; Liu S
    Proteins; 2023 Sep; 91(9):1245-1253. PubMed ID: 37186412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Four-body atomic potential for modeling protein-ligand binding affinity: application to enzyme-inhibitor binding energy prediction.
    Masso M
    BMC Struct Biol; 2013; 13 Suppl 1(Suppl 1):S1. PubMed ID: 24564918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PHOENIX: a scoring function for affinity prediction derived using high-resolution crystal structures and calorimetry measurements.
    Tang YT; Marshall GR
    J Chem Inf Model; 2011 Feb; 51(2):214-28. PubMed ID: 21214225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. emPDBA: protein-DNA binding affinity prediction by combining features from binding partners and interface learned with ensemble regression model.
    Yang S; Gong W; Zhou T; Sun X; Chen L; Zhou W; Li C
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37193676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iSEE: Interface structure, evolution, and energy-based machine learning predictor of binding affinity changes upon mutations.
    Geng C; Vangone A; Folkers GE; Xue LC; Bonvin AMJJ
    Proteins; 2019 Feb; 87(2):110-119. PubMed ID: 30417935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PredPRBA: Prediction of Protein-RNA Binding Affinity Using Gradient Boosted Regression Trees.
    Deng L; Yang W; Liu H
    Front Genet; 2019; 10():637. PubMed ID: 31428122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A machine learning approach towards the prediction of protein-ligand binding affinity based on fundamental molecular properties.
    Kundu I; Paul G; Banerjee R
    RSC Adv; 2018 Mar; 8(22):12127-12137. PubMed ID: 35539386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blind tests of RNA-protein binding affinity prediction.
    Kappel K; Jarmoskaite I; Vaidyanathan PP; Greenleaf WJ; Herschlag D; Das R
    Proc Natl Acad Sci U S A; 2019 Apr; 116(17):8336-8341. PubMed ID: 30962376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. graphDelta: MPNN Scoring Function for the Affinity Prediction of Protein-Ligand Complexes.
    Karlov DS; Sosnin S; Fedorov MV; Popov P
    ACS Omega; 2020 Mar; 5(10):5150-5159. PubMed ID: 32201802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.
    Brylinski M
    J Chem Inf Model; 2013 Nov; 53(11):3097-112. PubMed ID: 24171431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DLSSAffinity: protein-ligand binding affinity prediction
    Wang H; Liu H; Ning S; Zeng C; Zhao Y
    Phys Chem Chem Phys; 2022 May; 24(17):10124-10133. PubMed ID: 35416807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PRA-Pred: Structure-based prediction of protein-RNA binding affinity.
    Harini K; Sekijima M; Gromiha MM
    Int J Biol Macromol; 2024 Feb; 259(Pt 2):129490. PubMed ID: 38224813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the accuracy of high-throughput protein-protein affinity prediction may require better training data.
    Dias R; Kolaczkowski B
    BMC Bioinformatics; 2017 Mar; 18(Suppl 5):102. PubMed ID: 28361672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of RNA-binding amino acids from protein and RNA sequences.
    Choi S; Han K
    BMC Bioinformatics; 2011; 12 Suppl 13(Suppl 13):S7. PubMed ID: 22373313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Update of the ATTRACT force field for the prediction of protein-protein binding affinity.
    Chéron JB; Zacharias M; Antonczak S; Fiorucci S
    J Comput Chem; 2017 Jun; 38(21):1887-1890. PubMed ID: 28580613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ProNAB: database for binding affinities of protein-nucleic acid complexes and their mutants.
    Harini K; Srivastava A; Kulandaisamy A; Gromiha MM
    Nucleic Acids Res; 2022 Jan; 50(D1):D1528-D1534. PubMed ID: 34606614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CScore: a simple yet effective scoring function for protein-ligand binding affinity prediction using modified CMAC learning architecture.
    Ouyang X; Handoko SD; Kwoh CK
    J Bioinform Comput Biol; 2011 Dec; 9 Suppl 1():1-14. PubMed ID: 22144250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding Thermodynamics and Interaction Patterns of Inhibitor-Major Urinary Protein-I Binding from Extensive Free-Energy Calculations: Benchmarking AMBER Force Fields.
    Huai Z; Shen Z; Sun Z
    J Chem Inf Model; 2021 Jan; 61(1):284-297. PubMed ID: 33307679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dataset for protein-RNA binding affinity.
    Yang X; Li H; Huang Y; Liu S
    Protein Sci; 2013 Dec; 22(12):1808-11. PubMed ID: 24127340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning in Drug Design: Protein-Ligand Binding Affinity Prediction.
    Rezaei MA; Li Y; Wu D; Li X; Li C
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):407-417. PubMed ID: 33360998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.