BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 37186551)

  • 1. A High-Quality Genome-Scale Model for
    Roell GW; Schenk C; Anthony WE; Carr RR; Ponukumati A; Kim J; Akhmatskaya E; Foston M; Dantas G; Moon TS; Tang YJ; García Martín H
    ACS Synth Biol; 2023 Jun; 12(6):1632-1644. PubMed ID: 37186551
    [No Abstract]   [Full Text] [Related]  

  • 2. A concerted systems biology analysis of phenol metabolism in Rhodococcus opacus PD630.
    Roell GW; Carr RR; Campbell T; Shang Z; Henson WR; Czajka JJ; Martín HG; Zhang F; Foston M; Dantas G; Moon TS; Tang YJ
    Metab Eng; 2019 Sep; 55():120-130. PubMed ID: 31271774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 13C metabolic flux analysis at a genome-scale.
    Gopalakrishnan S; Maranas CD
    Metab Eng; 2015 Nov; 32():12-22. PubMed ID: 26358840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. E-Flux2 and SPOT: Validated Methods for Inferring Intracellular Metabolic Flux Distributions from Transcriptomic Data.
    Kim MK; Lane A; Kelley JJ; Lun DS
    PLoS One; 2016; 11(6):e0157101. PubMed ID: 27327084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630.
    Yoneda A; Henson WR; Goldner NK; Park KJ; Forsberg KJ; Kim SJ; Pesesky MW; Foston M; Dantas G; Moon TS
    Nucleic Acids Res; 2016 Mar; 44(5):2240-54. PubMed ID: 26837573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of transcriptomic constraint-based methods for central carbon flux inference.
    Bhadra-Lobo S; Kim MK; Lun DS
    PLoS One; 2020; 15(9):e0238689. PubMed ID: 32903284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A key
    Xue L; Zhao Y; Li L; Rao X; Chen X; Ma F; Yu H; Xie S
    Appl Environ Microbiol; 2023 Oct; 89(10):e0052223. PubMed ID: 37800939
    [No Abstract]   [Full Text] [Related]  

  • 8. Genome-Scale
    Ando D; García Martín H
    Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering of a xylose metabolic pathway in Rhodococcus strains.
    Xiong X; Wang X; Chen S
    Appl Environ Microbiol; 2012 Aug; 78(16):5483-91. PubMed ID: 22636009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development.
    Holder JW; Ulrich JC; DeBono AC; Godfrey PA; Desjardins CA; Zucker J; Zeng Q; Leach AL; Ghiviriga I; Dancel C; Abeel T; Gevers D; Kodira CD; Desany B; Affourtit JP; Birren BW; Sinskey AJ
    PLoS Genet; 2011 Sep; 7(9):e1002219. PubMed ID: 21931557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the accumulation of storage compounds by Rhodococcus jostii RHA1 in the feast-famine growth cycles using genome-scale flux balance analysis.
    Tajparast M; Frigon D
    PLoS One; 2018; 13(3):e0191835. PubMed ID: 29494607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Method to Constrain Genome-Scale Models with 13C Labeling Data.
    Martín HG; Kumar VS; Weaver D; Ghosh A; Chubukov V; Mukhopadhyay A; Arkin A; Keasling JD
    PLoS Comput Biol; 2015 Sep; 11(9):e1004363. PubMed ID: 26379153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of the oxidative stress-mediated increase in lipid accumulation by the bacterium, R. opacus PD630: Experimental analysis and genome-scale metabolic modeling.
    Sundararaghavan A; Mukherjee A; Sahoo S; Suraishkumar GK
    Biotechnol Bioeng; 2020 Jun; 117(6):1779-1788. PubMed ID: 32159222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering L-arabinose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production.
    Kurosawa K; Plassmeier J; Kalinowski J; Rückert C; Sinskey AJ
    Metab Eng; 2015 Jul; 30():89-95. PubMed ID: 25936337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid metabolic analysis of Rhodococcus opacus PD630 via parallel 13C-metabolite fingerprinting.
    Hollinshead WD; Henson WR; Abernathy M; Moon TS; Tang YJ
    Biotechnol Bioeng; 2016 Jan; 113(1):91-100. PubMed ID: 26174624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-scale metabolic model of Rhodococcus jostii RHA1 (iMT1174) to study the accumulation of storage compounds during nitrogen-limited condition.
    Tajparast M; Frigon D
    BMC Syst Biol; 2015 Aug; 9():43. PubMed ID: 26248853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The atf2 gene is involved in triacylglycerol biosynthesis and accumulation in the oleaginous Rhodococcus opacus PD630.
    Hernández MA; Arabolaza A; Rodríguez E; Gramajo H; Alvarez HM
    Appl Microbiol Biotechnol; 2013 Mar; 97(5):2119-30. PubMed ID: 22926642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Saccharification of cellulose by recombinant Rhodococcus opacus PD630 strains.
    Hetzler S; Bröker D; Steinbüchel A
    Appl Environ Microbiol; 2013 Sep; 79(17):5159-66. PubMed ID: 23793636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model validation and selection in metabolic flux analysis and flux balance analysis.
    Kaste JAM; Shachar-Hill Y
    Biotechnol Prog; 2024; 40(1):e3413. PubMed ID: 37997613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated omics study delineates the dynamics of lipid droplets in Rhodococcus opacus PD630.
    Chen Y; Ding Y; Yang L; Yu J; Liu G; Wang X; Zhang S; Yu D; Song L; Zhang H; Zhang C; Huo L; Huo C; Wang Y; Du Y; Zhang H; Zhang P; Na H; Xu S; Zhu Y; Xie Z; He T; Zhang Y; Wang G; Fan Z; Yang F; Liu H; Wang X; Zhang X; Zhang MQ; Li Y; Steinbüchel A; Fujimoto T; Cichello S; Yu J; Liu P
    Nucleic Acids Res; 2014 Jan; 42(2):1052-64. PubMed ID: 24150943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.