These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37186697)

  • 1. Ultra-stable cryogenic sapphire cavity laser with an instability reaching 2 × 10
    He L; Zhang J; Wang Z; Chang J; Wu Q; Lu Z; Zhang J
    Opt Lett; 2023 May; 48(10):2519-2522. PubMed ID: 37186697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibration Property of a Cryogenic Optical Resonator within a Pulse-Tube Cryostat.
    Ye Y; He L; Sun Y; Zhang F; Wang Z; Lu Z; Zhang J
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simplified cryogenic optical resonator apparatus providing ultra-low frequency drift.
    Wiens E; Kwong CJ; Müller T; Schiller S
    Rev Sci Instrum; 2020 Apr; 91(4):045112. PubMed ID: 32357702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical frequency reference based on a cryogenic silicon resonator.
    Wiens E; Kwong CJ; Müller T; Bongs K; Singh Y; Schiller S
    Opt Express; 2023 Dec; 31(25):42059-42076. PubMed ID: 38087588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryogenic sapphire optical reference cavity with crystalline coatings at 1 × 10-16 fractional frequency instability.
    Valencia J; Iskander G; Nardelli NV; Leibrandt DR; Hume DB
    Rev Sci Instrum; 2024 Oct; 95(10):. PubMed ID: 39356190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A cryogenic torsion balance using a liquid-cryogen free, ultra-low vibration cryostat.
    Fleischer SM; Ross MP; Venkateswara K; Hagedorn CA; Shaw EA; Swanson E; Heckel BR; Gundlach JH
    Rev Sci Instrum; 2022 Jun; 93(6):064505. PubMed ID: 35777998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Digital control of residual amplitude modulation at the 10
    Gillot J; Falzon Tetsing-Talla S; Denis S; Goavec-Merou G; Millo J; Lacroûte C; Kersalé Y
    Opt Express; 2022 Sep; 30(20):35179-35188. PubMed ID: 36258475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic fountain clock with very high frequency stability employing a pulse-tube-cryocooled sapphire oscillator.
    Takamizawa A; Yanagimachi S; Tanabe T; Hagimoto K; Hirano I; Watabe K; Ikegami T; Hartnett JG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Sep; 61(9):1463-9. PubMed ID: 25167146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of Active Vibration Isolation Controller with Disturbance Observer-Based Linear Quadratic Regulator for Optical Reference Cavities.
    Qian Y; Xie Y; Jia J; Zhang L
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-stable dry cryostat for variable temperature break junction.
    Gemma A; Zulji A; Hurtak F; Fatayer S; Kittel A; Calame M; Gotsmann B
    Rev Sci Instrum; 2021 Dec; 92(12):123704. PubMed ID: 34972437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryogenic sapphire oscillator using a low-vibration design pulse-tube cryocooler: first results.
    Hartnett J; Nand N; Wang C; Floch JM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1034-8. PubMed ID: 20442014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of electrical noise limits in ultra-stable laser systems.
    Zhang J; Shi XH; Zeng XY; Lü XL; Deng K; Lu ZH
    Rev Sci Instrum; 2016 Dec; 87(12):123105. PubMed ID: 28040928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryogenic ion trapping systems with surface-electrode traps.
    Antohi PB; Schuster D; Akselrod GM; Labaziewicz J; Ge Y; Lin Z; Bakr WS; Chuang IL
    Rev Sci Instrum; 2009 Jan; 80(1):013103. PubMed ID: 19191425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrahigh long-term dimensional stability of a sapphire cryogenic optical resonator.
    Storz R; Braxmaier C; Jäck K; Pradl O; Schiller S
    Opt Lett; 1998 Jul; 23(13):1031-3. PubMed ID: 18087419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-low-vibration closed-cycle cryogenic surface-electrode ion trap apparatus.
    Dubielzig T; Halama S; Hahn H; Zarantonello G; Niemann M; Bautista-Salvador A; Ospelkaus C
    Rev Sci Instrum; 2021 Apr; 92(4):043201. PubMed ID: 34243401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A helium mini-cryostat for the nanoprobe beamline ID16B at ESRF: characteristics and performance.
    Steinmann RG; Martinez-Criado G; Salomon D; Vitoux H; Tucoulou R; Villanova J; Laboure S; Eymery J; Segura-Ruiz J
    J Synchrotron Radiat; 2020 Jul; 27(Pt 4):1074-1079. PubMed ID: 33566018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical frequency synthesis from a cryogenic microwave sapphire oscillator.
    McFerran JJ; Dawkins ST; Stanwix PL; Tobar ME; Luiten AN
    Opt Express; 2006 May; 14(10):4316-27. PubMed ID: 19516584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-stable 1064-nm neodymium-doped yttrium aluminum garnet lasers with 2.5 × 10
    Li L; Wang J; Bi J; Zhang T; Peng J; Zhi Y; Chen L
    Rev Sci Instrum; 2021 Apr; 92(4):043001. PubMed ID: 34243418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ultrastable 1397-nm laser stabilized by a crystalline-coated room-temperature cavity.
    Zhu XQ; Cui XY; Kong DQ; Yu HW; Zhai XM; Zheng MY; Xie XP; Zhang Q; Jiang X; Zhang XB; Xu P; Dai HN; Chen YA; Pan JW
    Rev Sci Instrum; 2024 Aug; 95(8):. PubMed ID: 39120445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transportable interrogation laser system with an instability of mod σ
    Häfner S; Herbers S; Vogt S; Lisdat C; Sterr U
    Opt Express; 2020 May; 28(11):16407-16416. PubMed ID: 32549464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.