These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 37186721)
1. Physical-layer security of optical communication based on chaotic optical encryption without an additional driving signal. Xue C; Xia Y; Chen W; Gu P; Zhang Z Opt Lett; 2023 May; 48(10):2611-2614. PubMed ID: 37186721 [TBL] [Abstract][Full Text] [Related]
2. Physical secure optical communication based on private chaotic spectral phase encryption/decryption. Jiang N; Zhao A; Xue C; Tang J; Qiu K Opt Lett; 2019 Apr; 44(7):1536-1539. PubMed ID: 30933084 [TBL] [Abstract][Full Text] [Related]
3. Privacy protection for 3D point cloud classification based on an optical chaotic encryption scheme. Liu B; Liu Y; Xie Y; Jiang X; Ye Y; Song T; Chai J; Liu M; Feng M; Yuan H Opt Express; 2023 Feb; 31(5):8820-8843. PubMed ID: 36859989 [TBL] [Abstract][Full Text] [Related]
4. Security mesh-based optical network exploiting the double masking scheme. Feng M; Xie Y; Dai L; Liu B; Jiang X; Chai J; Tang Q; Yang R; Yuan H Opt Express; 2022 Nov; 30(24):43826-43841. PubMed ID: 36523073 [TBL] [Abstract][Full Text] [Related]
5. Generation of synchronized wideband complex signals and its application in secure optical communication. Zhao A; Jiang N; Liu S; Zhang Y; Qiu K Opt Express; 2020 Aug; 28(16):23363-23373. PubMed ID: 32752334 [TBL] [Abstract][Full Text] [Related]
6. Experimental demonstration of synchronous privacy enhanced chaotic temporal phase en/decryption for high speed secure optical communication. Gao Z; Wu Q; Liao L; Su B; Gao X; Fu S; Li Z; Wang Y; Qin Y Opt Express; 2022 Aug; 30(17):31209-31219. PubMed ID: 36242208 [TBL] [Abstract][Full Text] [Related]
7. Communicating with noise: How chaos and noise combine to generate secure encryption keys. Minai AA; Pandian TD Chaos; 1998 Sep; 8(3):621-628. PubMed ID: 12779766 [TBL] [Abstract][Full Text] [Related]
8. Scheme of coherent optical chaos communication. Wang L; Mao X; Wang A; Wang Y; Gao Z; Li S; Yan L Opt Lett; 2020 Sep; 45(17):4762-4765. PubMed ID: 32870851 [TBL] [Abstract][Full Text] [Related]
9. Secure passive optical network based on chaos synchronization. Jiang N; Zhang C; Qiu K Opt Lett; 2012 Nov; 37(21):4501-3. PubMed ID: 23114343 [TBL] [Abstract][Full Text] [Related]
10. A Secure Transmission Scheme Based on Artificial Fading for Wireless CrowdSensing Networks. Xu ZJ; Chen FN; Wu Y; Gong Y Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30336577 [TBL] [Abstract][Full Text] [Related]
11. Security-enhanced chaos communication with time-delay signature suppression and phase encryption. Xue C; Jiang N; Lv Y; Wang C; Li G; Lin S; Qiu K Opt Lett; 2016 Aug; 41(16):3690-3. PubMed ID: 27519064 [TBL] [Abstract][Full Text] [Related]
12. Traceless encryption approach for physical layer security in coherent optical communications system. Zhao ZS; Li PL; Gan WM Opt Express; 2023 Apr; 31(8):12585-12596. PubMed ID: 37157415 [TBL] [Abstract][Full Text] [Related]
13. Chaotic optical communications at 56 Gbit/s over 100-km fiber transmission based on a chaos generation model driven by long short-term memory networks. Jiang L; Feng J; Yan L; Yi A; Li SS; Yang H; Dong Y; Wang L; Wang A; Wang Y; Pan W; Luo B Opt Lett; 2022 May; 47(10):2382-2385. PubMed ID: 35561356 [TBL] [Abstract][Full Text] [Related]
14. Trading off security and practicability to explore high-speed and long-haul chaotic optical communication. Jiang L; Pan Y; Yi A; Feng J; Pan W; Yi L; Hu W; Wang A; Wang Y; Qin Y; Yan L Opt Express; 2021 Apr; 29(8):12750-12762. PubMed ID: 33985025 [TBL] [Abstract][Full Text] [Related]
15. Chaos Synchronization of Integrated Five-Section Semiconductor Lasers. Guo Y; Du Y; Gao H; Tan M; Zhao T; Jia Z; Chang P; Wang L Entropy (Basel); 2024 May; 26(5):. PubMed ID: 38785654 [TBL] [Abstract][Full Text] [Related]
16. Complex entropy based encryption and decryption technique for securing medical images. Kumar V; Pathak V; Badal N; Pandey PS; Mishra R; Gupta SK Multimed Tools Appl; 2022; 81(26):37441-37459. PubMed ID: 35912061 [TBL] [Abstract][Full Text] [Related]
17. Signal-to-noise ratio degradation analysis for optoelectronic feedback-based chaotic optical communication systems. Xie Y; Yang Z; Shi M; Hu W; Yi L Opt Lett; 2023 Oct; 48(19):5005-5008. PubMed ID: 37773371 [TBL] [Abstract][Full Text] [Related]
18. 56 Gb/s PAM4 physical secure communication based on electro-optic self-feedback hardware temporal phase encryption and decryption. Gao Z; Luo Y; Zhang L; Tang B; Gao X; Gu W; Sun Y; Li Z; Qin Y; Wang Y Opt Express; 2023 Jan; 31(2):1666-1676. PubMed ID: 36785197 [TBL] [Abstract][Full Text] [Related]
19. Multiuser communication scheme based on binary phase-shift keying and chaos for telemedicine. Michel-Macarty JA; Murillo-Escobar MA; López-Gutiérrez RM; Cruz-Hernández C; Cardoza-Avendaño L Comput Methods Programs Biomed; 2018 Aug; 162():165-175. PubMed ID: 29903483 [TBL] [Abstract][Full Text] [Related]
20. Physical secure key distribution based on chaotic self-carrier phase modulation and time-delayed shift keying of synchronized optical chaos. Gao Z; Ma Z; Wu S; Gao H; Wang A; Fu S; Li Z; Qin Y; Wang Y Opt Express; 2022 Jun; 30(13):23953-23966. PubMed ID: 36225066 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]