These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37186742)

  • 1. 1024-ary composite OAM shift keying for free-space optical communication system decoded by a two-step neural network.
    Zhu J; Fan M; Pu Y; Li H; Wang S
    Opt Lett; 2023 May; 48(10):2692-2695. PubMed ID: 37186742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 65,536-ary orbital angular momentum-shift keying free-space optical communication based on few-shot learning.
    Chen W; Lin Q; Chen W; Zhang Z; Zhuang Z; Su Z; Zhang L
    Opt Lett; 2023 Apr; 48(7):1886-1889. PubMed ID: 37221791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-dimensional structured light coding/decoding for free-space optical communications free of obstructions.
    Du J; Wang J
    Opt Lett; 2015 Nov; 40(21):4827-30. PubMed ID: 26512460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Turbo-coded 16-ary OAM shift keying FSO communication system combining the CNN-based adaptive demodulator.
    Tian Q; Li Z; Hu K; Zhu L; Pan X; Zhang Q; Wang Y; Tian F; Yin X; Xin X
    Opt Express; 2018 Oct; 26(21):27849-27864. PubMed ID: 30469843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free-space 16-ary orbital angular momentum coded optical communication system based on chaotic interleaving and convolutional neural networks.
    El-Meadawy SA; Shalaby HMH; Ismail NA; Abd El-Samie FE; Farghal AEA
    Appl Opt; 2020 Aug; 59(23):6966-6976. PubMed ID: 32788788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topological charge measurement of concentric OAM states using the phase-shift method.
    Gao H; Han Y; Li Y; Zhu D; Sun M; Yu S
    J Opt Soc Am A Opt Image Sci Vis; 2018 Jan; 35(1):A40-A44. PubMed ID: 29328083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental demonstration of free-space multi-state orbital angular momentum shift keying.
    Fu S; Zhai Y; Zhou H; Zhang J; Wang T; Liu X; Gao C
    Opt Express; 2019 Nov; 27(23):33111-33119. PubMed ID: 31878385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectrum Decomposition-Based Orbital Angular Momentum Communication of Acoustic Vortex Beams Using Single-Ring Transceiver Arrays.
    Guo G; Li X; Wang Q; Li Y; Chu H; Ma Q; Tu J; Zhang D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):1399-1407. PubMed ID: 33108285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superposition of two fractional optical vortices and the orbital angular momentum measurement by a deep-learning method.
    Cao F; Pu T; Xie C
    Appl Opt; 2021 Dec; 60(36):11134-11143. PubMed ID: 35201101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-order orbital angular momentum mode-based phase shift-keying communication using phase difference modulation.
    Chen J; Huang Z; Wang P; Ye H; Chen S; Fan D; Liu J
    Opt Express; 2023 Dec; 31(26):44353-44363. PubMed ID: 38178508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental recognition of vortex beams in oceanic turbulence combining the Gerchberg-Saxton algorithm and convolutional neural network.
    Fan WQ; Gao FL; Xue FC; Guo JJ; Xiao Y; Gu YJ
    Appl Opt; 2024 Feb; 63(4):982-989. PubMed ID: 38437395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-speed acoustic communication by multiplexing orbital angular momentum.
    Shi C; Dubois M; Wang Y; Zhang X
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7250-7253. PubMed ID: 28652341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 768-ary Laguerre-Gaussian-mode shift keying free-space optical communication based on convolutional neural networks.
    Luan H; Lin D; Li K; Meng W; Gu M; Fang X
    Opt Express; 2021 Jun; 29(13):19807-19818. PubMed ID: 34266083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarized deep diffractive neural network for sorting, generation, multiplexing, and de-multiplexing of orbital angular momentum modes.
    Zhang J; Ye Z; Yin J; Lang L; Jiao S
    Opt Express; 2022 Jul; 30(15):26728-26741. PubMed ID: 36236859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental demonstration of multiple dimensional coding decoding for image transfer with controllable vortex arrays.
    Zhu L; Wang A; Deng M; Lu B; Guo X
    Sci Rep; 2021 Jun; 11(1):12012. PubMed ID: 34103592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topological charge identification of superimposed orbital angular momentum beams under turbulence using an attention mechanism.
    Zhang Y; Zhao W; Xu T; Ren Y; Zhang R; Pan Z; Yue Y
    Opt Express; 2024 Jan; 32(2):1941-1955. PubMed ID: 38297735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fundamental probing limit on the high-order orbital angular momentum of light.
    Zhou J; Tang J; Yin Y; Xia Y; Yin J
    Opt Express; 2024 Feb; 32(4):5339-5352. PubMed ID: 38439263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple OAM vortex beams generation using 1-bit metasurface.
    Zhang D; Cao X; Yang H; Gao J; Zhu X
    Opt Express; 2018 Sep; 26(19):24804-24815. PubMed ID: 30469592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning approach to OAM beam demultiplexing via convolutional neural networks.
    Doster T; Watnik AT
    Appl Opt; 2017 Apr; 56(12):3386-3396. PubMed ID: 28430266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical diffractive deep neural network-based orbital angular momentum mode add-drop multiplexer.
    Xiong W; Huang Z; Wang P; Wang X; He Y; Wang C; Liu J; Ye H; Fan D; Chen S
    Opt Express; 2021 Oct; 29(22):36936-36952. PubMed ID: 34809092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.