These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 37186770)

  • 1. 40 Years of Low-Temperature Electrolytes for Rechargeable Lithium Batteries.
    Li Z; Yao YX; Sun S; Jin CB; Yao N; Yan C; Zhang Q
    Angew Chem Int Ed Engl; 2023 Sep; 62(37):e202303888. PubMed ID: 37186770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Promoting Rechargeable Batteries Operated at Low Temperature.
    Dong X; Wang YG; Xia Y
    Acc Chem Res; 2021 Oct; 54(20):3883-3894. PubMed ID: 34622652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-temperature lithium-ion batteries: challenges and progress of surface/interface modifications for advanced performance.
    Mei P; Zhang Y; Zhang W
    Nanoscale; 2023 Jan; 15(3):987-997. PubMed ID: 36541266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Metal-Organic Framework Based Quasi-Solid-State Electrolyte Enabling Continuous Ion Transport for High-Safety and High-Energy-Density Lithium Metal Batteries.
    Wu Z; Yi Y; Hai F; Tian X; Zheng S; Guo J; Tang W; Hua W; Li M
    ACS Appl Mater Interfaces; 2023 May; 15(18):22065-22074. PubMed ID: 37122124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries.
    Zhou L; Minafra N; Zeier WG; Nazar LF
    Acc Chem Res; 2021 Jun; 54(12):2717-2728. PubMed ID: 34032414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.
    Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA
    Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical Review on Low-Temperature Li-Ion/Metal Batteries.
    Zhang N; Deng T; Zhang S; Wang C; Chen L; Wang C; Fan X
    Adv Mater; 2022 Apr; 34(15):e2107899. PubMed ID: 34855260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances in Porous Polymers for Solid-State Rechargeable Lithium Batteries.
    Zou J; Ben T
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36432931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrolyte Design for Lithium Metal Anode-Based Batteries Toward Extreme Temperature Application.
    Luo D; Li M; Zheng Y; Ma Q; Gao R; Zhang Z; Dou H; Wen G; Shui L; Yu A; Wang X; Chen Z
    Adv Sci (Weinh); 2021 Sep; 8(18):e2101051. PubMed ID: 34272930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research Progress and Perspective on Lithium/Sodium Metal Anodes for Next-Generation Rechargeable Batteries.
    Patrike A; Yadav P; Shelke V; Shelke M
    ChemSusChem; 2022 Jul; 15(14):e202200504. PubMed ID: 35560981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational Design of Electrode-Electrolyte Interphase and Electrolytes for Rechargeable Proton Batteries.
    Su Z; Guo H; Zhao C
    Nanomicro Lett; 2023 Apr; 15(1):96. PubMed ID: 37037988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Unique Hybrid Quasi-Solid-State Electrolyte for Li-O2 Batteries with Improved Cycle Life and Safety.
    Yi J; Zhou H
    ChemSusChem; 2016 Sep; 9(17):2391-6. PubMed ID: 27487523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roadmap on Ionic Liquid Electrolytes for Energy Storage Devices.
    Xu C; Yang G; Wu D; Yao M; Xing C; Zhang J; Zhang H; Li F; Feng Y; Qi S; Zhuo M; Ma J
    Chem Asian J; 2021 Mar; 16(6):549-562. PubMed ID: 33377601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Taming Solvent-Solute Interaction Accelerates Interfacial Kinetics in Low-Temperature Lithium-Metal Batteries.
    Jin CB; Yao N; Xiao Y; Xie J; Li Z; Chen X; Li BQ; Zhang XQ; Huang JQ; Zhang Q
    Adv Mater; 2023 Jan; 35(3):e2208340. PubMed ID: 36305016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Developments of All-Solid-State Lithium Secondary Batteries with Sulfide Inorganic Electrolytes.
    Xu R; Zhang S; Wang X; Xia Y; Xia X; Wu J; Gu C; Tu J
    Chemistry; 2018 Apr; 24(23):6007-6018. PubMed ID: 29071773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid Ionogel Electrolytes for Advanced Lithium Secondary Batteries: Developments and Challenges.
    Hu Y; Yu L; Meng T; Zhou S; Sui X; Hu X
    Chem Asian J; 2022 Dec; 17(23):e202200794. PubMed ID: 36177983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass transport and charge transfer through an electrified interface between metallic lithium and solid-state electrolytes.
    Katzenmeier L; Gößwein M; Carstensen L; Sterzinger J; Ederer M; Müller-Buschbaum P; Gagliardi A; Bandarenka AS
    Commun Chem; 2023 Jun; 6(1):124. PubMed ID: 37322266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negating the Interfacial Resistance between Solid and Liquid Electrolytes for Next-Generation Lithium Batteries.
    Vivek JP; Meddings N; Garcia-Araez N
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):633-646. PubMed ID: 34962750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.