These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 37186821)
1. Quantifying the partial ionization effect of gold in the transition region between condensed matter and warm dense matter. Li Z; Wang X; Hou Y; Yu Y; Li G; Hao L; Li X; Geng H; Dai C; Wu Q; Mao HK; Hu J Proc Natl Acad Sci U S A; 2023 May; 120(21):e2300066120. PubMed ID: 37186821 [TBL] [Abstract][Full Text] [Related]
2. Laser-shock compression of magnesium oxide in the warm-dense-matter regime. Miyanishi K; Tange Y; Ozaki N; Kimura T; Sano T; Sakawa Y; Tsuchiya T; Kodama R Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):023103. PubMed ID: 26382531 [TBL] [Abstract][Full Text] [Related]
3. Nonideal mixing effects in warm dense matter studied with first-principles computer simulations. Militzer B; González-Cataldo F; Zhang S; Whitley HD; Swift DC; Millot M J Chem Phys; 2020 Nov; 153(18):184101. PubMed ID: 33187447 [TBL] [Abstract][Full Text] [Related]
4. Unified first principles description from warm dense matter to ideal ionized gas plasma: electron-ion collisions induced friction. Dai J; Hou Y; Yuan J Phys Rev Lett; 2010 Jun; 104(24):245001. PubMed ID: 20867307 [TBL] [Abstract][Full Text] [Related]
5. Dynamic electron-ion collisions and nuclear quantum effects in quantum simulation of warm dense matter. Kang D; Dai J J Phys Condens Matter; 2018 Feb; 30(7):073002. PubMed ID: 29186001 [TBL] [Abstract][Full Text] [Related]
7. Development of a three-stage gas gun launcher for ultrahigh-pressure Hugoniot measurements. Wang X; Dai C; Wang Q; Hao L; Bai J; Yu Y; Wu Q; Tan H; Hu J; Luo G; Shen Q; Zhang L Rev Sci Instrum; 2019 Jan; 90(1):013903. PubMed ID: 30709225 [TBL] [Abstract][Full Text] [Related]
8. X-ray Thomson Scattering in Warm Dense Matter without the Chihara Decomposition. Baczewski AD; Shulenburger L; Desjarlais MP; Hansen SB; Magyar RJ Phys Rev Lett; 2016 Mar; 116(11):115004. PubMed ID: 27035307 [TBL] [Abstract][Full Text] [Related]
9. Mixed stochastic-deterministic time-dependent density functional theory: application to stopping power of warm dense carbon. White AJ; Collins LA; Nichols K; Hu SX J Phys Condens Matter; 2022 Feb; 34(17):. PubMed ID: 35081511 [TBL] [Abstract][Full Text] [Related]
10. Nonlinear Electronic Density Response in Warm Dense Matter. Dornheim T; Vorberger J; Bonitz M Phys Rev Lett; 2020 Aug; 125(8):085001. PubMed ID: 32909774 [TBL] [Abstract][Full Text] [Related]
11. Direct Observation of Enhanced Electron-Phonon Coupling in Copper Nanoparticles in the Warm-Dense Matter Regime. Nguyen QLD; Simoni J; Dorney KM; Shi X; Ellis JL; Brooks NJ; Hickstein DD; Grennell AG; Yazdi S; Campbell EEB; Tan LZ; Prendergast D; Daligault J; Kapteyn HC; Murnane MM Phys Rev Lett; 2023 Aug; 131(8):085101. PubMed ID: 37683150 [TBL] [Abstract][Full Text] [Related]
13. The relevance of electronic perturbations in the warm dense electron gas. Moldabekov Z; Dornheim T; Böhme M; Vorberger J; Cangi A J Chem Phys; 2021 Sep; 155(12):124116. PubMed ID: 34598570 [TBL] [Abstract][Full Text] [Related]
14. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams. Bang W; Albright BJ; Bradley PA; Gautier DC; Palaniyappan S; Vold EL; Santiago Cordoba MA; Hamilton CE; Fernández JC Sci Rep; 2015 Sep; 5():14318. PubMed ID: 26392208 [TBL] [Abstract][Full Text] [Related]
15. Evidence for Dissociation and Ionization in Shock Compressed Nitrogen to 800 GPa. Kim YJ; Militzer B; Boates B; Bonev S; Celliers PM; Collins GW; Driver KP; Fratanduono DE; Hamel S; Jeanloz R; Rygg JR; Swift DC; Eggert JH; Millot M Phys Rev Lett; 2022 Jul; 129(1):015701. PubMed ID: 35841582 [TBL] [Abstract][Full Text] [Related]
16. Uniform warm dense matter formed by direct laser heating in the presence of external magnetic fields. Wu D; Yu W; Sheng ZM; Fritzsche S; He XT Phys Rev E; 2020 May; 101(5-1):051202. PubMed ID: 32575343 [TBL] [Abstract][Full Text] [Related]
17. Dynamic compression of dense oxide (Gd3Ga5O12) from 0.4 to 2.6 TPa: Universal Hugoniot of fluid metals. Ozaki N; Nellis WJ; Mashimo T; Ramzan M; Ahuja R; Kaewmaraya T; Kimura T; Knudson M; Miyanishi K; Sakawa Y; Sano T; Kodama R Sci Rep; 2016 May; 6():26000. PubMed ID: 27193942 [TBL] [Abstract][Full Text] [Related]
18. Ionization potential depression and Pauli blocking in degenerate plasmas at extreme densities. Röpke G; Blaschke D; Döppner T; Lin C; Kraeft WD; Redmer R; Reinholz H Phys Rev E; 2019 Mar; 99(3-1):033201. PubMed ID: 30999524 [TBL] [Abstract][Full Text] [Related]
19. Thermodynamics, compressibility, and phase diagram: shock compression of supercritical fluid xenon. Zheng J; Chen QF; Gu YJ; Chen ZY; Li CJ J Chem Phys; 2014 Sep; 141(12):124201. PubMed ID: 25273430 [TBL] [Abstract][Full Text] [Related]
20. High-temperature high-pressure phases of lithium from electron force field (eFF) quantum electron dynamics simulations. Kim H; Su JT; Goddard WA Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15101-5. PubMed ID: 21873210 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]